The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences - PubMed
- ️Invalid Date
. 2011 Jul;39(Web Server issue):W107-11.
doi: 10.1093/nar/gkr248. Epub 2011 May 23.
Affiliations
- PMID: 21609960
- PMCID: PMC3125731
- DOI: 10.1093/nar/gkr248
The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences
Stefan E Seemann et al. Nucleic Acids Res. 2011 Jul.
Abstract
The function of non-coding RNA genes largely depends on their secondary structure and the interaction with other molecules. Thus, an accurate prediction of secondary structure and RNA-RNA interaction is essential for the understanding of biological roles and pathways associated with a specific RNA gene. We present web servers to analyze multiple RNA sequences for common RNA structure and for RNA interaction sites. The web servers are based on the recent PET (Probabilistic Evolutionary and Thermodynamic) models PETfold and PETcofold, but add user friendly features ranging from a graphical layer to interactive usage of the predictors. Additionally, the web servers provide direct access to annotated RNA alignments, such as the Rfam 10.0 database and multiple alignments of 16 vertebrate genomes with human. The web servers are freely available at: http://rth.dk/resources/petfold/
Figures

The
PETfoldoutput for the microRNA lin-4 based on the sequence alignment from Rfam 10.0: (a)–(d) are seed sequences without paralogs and (e)–(f) are seed sequences without paralogs and Drosophila melanogaster. The output consists of a phylogenetic tree (a), the respective input alignment with indication of the sequence conservation and the predicted RNA structure in dot-bracket format and pairing reliabilities (b and e), the predicted RNA structure (c and f), and finally the dotplot with base pair reliabilities in the upper left triangle (size of squares is linear correlated to reliabilities) and MEA-structure in lower right triangle (d). The vertical and horizontal lines stand for base indices dividable by 10. In (b,c,e,f) compensatory mutations supporting the consensus structure are marked by the Vienna RNA coloring schema.

The
PET(co)foldoutput for the antisense RNA FinP regulation of the 5′-UTR of the major F-plasmid transcriptional activator TraJ based on the sequence alignment without paralogs from Rfam 10.0: (a) the dotplot of FinP with base pair reliabilities in upper left triangle and MEA-structure in lower right triangle produced by
PETfold; (b) the dotplot of TraJ produced by
PETfold; (c) the concatenated Rfam seed alignments with sequence conservation indicated, the
PETcofoldpredicted structure in dot-bracket format and base paired reliabilities; (d) the
PETcofoldpredicted RNA binding structure. (a) and (b) show the output produced by the
PETfoldweb server and (c) and (d) show the output produced by the
PETcofoldweb server. Intra-molecular pairing is denoted by round brackets in (c) and arcs in (d) and inter-molecular pairing is denoted by curly brackets in (c) and straight lines between both sequences in (d).
Similar articles
-
Software.ncrna.org: web servers for analyses of RNA sequences.
Asai K, Kiryu H, Hamada M, Tabei Y, Sato K, Matsui H, Sakakibara Y, Terai G, Mituyama T. Asai K, et al. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W75-8. doi: 10.1093/nar/gkn222. Epub 2008 Apr 25. Nucleic Acids Res. 2008. PMID: 18440970 Free PMC article.
-
Seemann SE, Richter AS, Gesell T, Backofen R, Gorodkin J. Seemann SE, et al. Bioinformatics. 2011 Jan 15;27(2):211-9. doi: 10.1093/bioinformatics/btq634. Epub 2010 Nov 18. Bioinformatics. 2011. PMID: 21088024 Free PMC article.
-
The FOLDALIGN web server for pairwise structural RNA alignment and mutual motif search.
Havgaard JH, Lyngsø RB, Gorodkin J. Havgaard JH, et al. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W650-3. doi: 10.1093/nar/gki473. Nucleic Acids Res. 2005. PMID: 15980555 Free PMC article.
-
Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
Washietl S, Bernhart SH, Kellis M. Washietl S, et al. Methods Mol Biol. 2014;1097:125-41. doi: 10.1007/978-1-62703-709-9_7. Methods Mol Biol. 2014. PMID: 24639158 Review.
-
RNA Structure Prediction, Analysis, and Design: An Introduction to Web-Based Tools.
Zambrano RAI, Hernandez-Perez C, Takahashi MK. Zambrano RAI, et al. Methods Mol Biol. 2022;2518:253-269. doi: 10.1007/978-1-0716-2421-0_15. Methods Mol Biol. 2022. PMID: 35666450 Review.
Cited by
-
Bioinformatics of prokaryotic RNAs.
Backofen R, Amman F, Costa F, Findeiß S, Richter AS, Stadler PF. Backofen R, et al. RNA Biol. 2014;11(5):470-83. doi: 10.4161/rna.28647. Epub 2014 Apr 2. RNA Biol. 2014. PMID: 24755880 Free PMC article. Review.
-
Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain.
Seemann SE, Sunkin SM, Hawrylycz MJ, Ruzzo WL, Gorodkin J. Seemann SE, et al. BMC Genomics. 2012 May 31;13:214. doi: 10.1186/1471-2164-13-214. BMC Genomics. 2012. PMID: 22651826 Free PMC article.
-
Shylla JA, Ghatani S, Tandon V. Shylla JA, et al. Parasitol Res. 2013 Dec;112(12):4239-53. doi: 10.1007/s00436-013-3616-8. Epub 2013 Oct 6. Parasitol Res. 2013. PMID: 24096607
-
How the initiating ribosome copes with ppGpp to translate mRNAs.
Vinogradova DS, Zegarra V, Maksimova E, Nakamoto JA, Kasatsky P, Paleskava A, Konevega AL, Milón P. Vinogradova DS, et al. PLoS Biol. 2020 Jan 29;18(1):e3000593. doi: 10.1371/journal.pbio.3000593. eCollection 2020 Jan. PLoS Biol. 2020. PMID: 31995552 Free PMC article.
-
Joint modeling of RNase footprint sequencing profiles for genome-wide inference of RNA structure.
Zou C, Ouyang Z. Zou C, et al. Nucleic Acids Res. 2015 Oct 30;43(19):9187-97. doi: 10.1093/nar/gkv950. Epub 2015 Sep 22. Nucleic Acids Res. 2015. PMID: 26400167 Free PMC article.
References
-
- Mattick JS, Makunin IV. Non-coding RNA. Hum. Mol. Genet. 2006;15:R17–R29. - PubMed
-
- Hofacker I, Fontana W, Stadler P, Bonhoeffer L, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatsh Chem. 1994;125:167–188.
-
- Zuker M. Prediction of RNA secondary structure by energy minimization. Methods Mol. Biol. 1994;25:267–294. - PubMed