Viral serpin therapeutics from concept to clinic - PubMed
Review
doi: 10.1016/B978-0-12-386471-0.00015-8.
Donghang Zheng, Jennifer Davids, Mee Yong Bartee, Erbin Dai, Liying Liu, Lyubomir Petrov, Colin Macaulay, Robert Thoburn, Eric Sobel, Richard Moyer, Grant McFadden, Alexandra Lucas
Affiliations
- PMID: 21683260
- PMCID: PMC3558843
- DOI: 10.1016/B978-0-12-386471-0.00015-8
Review
Viral serpin therapeutics from concept to clinic
Hao Chen et al. Methods Enzymol. 2011.
Abstract
Over the past 19 years, we have developed a novel myxoma virus-derived anti-inflammatory serine protease inhibitor, termed a serpin, as a new class of immunomodulatory therapeutic. This review will describe the initial identification of viral serpins with anti-inflammatory potential, beginning with preclinical analysis of viral pathogenesis and proceeding to cell and molecular target analyses, and successful clinical trial. The central aim of this review is to describe the development of two serpins, Serp-1 and Serp-2, as a new class of immune modulating drug, from inception to implementation. We begin with an overview of the approaches used for successful mining of the virus for potential serpin immunomodulators in viruses. We then provide a methodological overview of one inflammatory animal model used to test for serpin anti-inflammatory activity followed by methods used to identify cells in the inflammatory response system targeted by these serpins and molecular responses to serpin treatment. Finally, we provide an overview of our findings from a recent, successful clinical trial of the secreted myxomaviral serpin, Serp-1, in patients with unstable inflammatory coronary arterial disease.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures

Hypothetical models of Serp-1 (left, A) and Serp-2 (right, B) based on known crystallized homologous protein structures, PAI-1 (PBD ID: 3CVM) for Serp-1 and CrmA (PBD ID: 1C8O) for Serp-2, respectively. The arrows point to the reactive site loops (RSL).

Illustration of aortic balloon angioplasty injury in mouse model of accelerated atherosclerosis and arterial aneurysmal dilatation. The right iliac artery is dissected and ligated proximally and distally (left panel). A microcatheter is inserted and advanced into the aorta and the balloon is inflated and then pulled back along the vessel (middle panel). Balloon passage is repeated twice and then the catheter is withdrawn and the iliac artery ligated (right panel).

Picture of balloon angioplasty in mouse. Lower left inserted picture shows abdominal incision and surgical exposure of the aorta for angioplasty balloon insertion and injury. Mag 10×. , represents the right iliac artery into which the balloon is inserted;
, represents the abdominal aorta;
, represents the balloon inserted into the right iliac artery and advanced into the abdominal aorta where it is inflated with saline and dragged back and forth in the aorta to stretch the aorta and to induce damage.

Cross-sections of Hematoxylin and eosin (H & E) stained aorta isolated from mice 4 weeks after balloon angioplasty injury. Large areas of intimal plaque growth (arrows, A. Mag 200×) and aneurysmal dilatation (B. Mag 100×) were detected in ApoE-/- mice, but not in CCR2-/- (C. Mag 200×), PAI-1-/- (D. Mag 200×), Parp1-/- (E. Mag 200×), nor WT C57Bl/6 (F. Mag 200×) mice. A lower magnification picture is used in panel B to illustrate the marked increase in internal elastic lamina (IEL) diameter as marked by a double sided arrow demonstrating aneurysmal dilatation.

(A) Bar graphs illustrate differing plaque size with each mouse model. ApoE-/-mice with balloon injury have significantly larger plaque area (P < 0.004) than the other KO (knock out) mouse models or WT mice. (B) Bar graphs demonstrate increased mean internal elastic lamina (IEL) diameter in ApoE-/- mice when compared to WT and KO mouse models after angioplasty injury, evaluated at 4 weeks postangioplasty.

Fluorescence flow cytometric assay of mouse spleen cell isolates with dot plot displaying CD3-PerCP-Cy5.5 on the x-axis and CD4-PE-Cy7 on the y-axis.

Dramatic differences between the number of genes regulated by all treatments in THP-1 monocytes at 30 min and Jurkat T cells, then again with the total number of genes regulated at 4.5 h. A set of apparently shared target genes is detectable in THP-1 cells at 30 min after treatment with each of the viral proteins.

Serum D Dimer levels in blood samples from ACS patients treated with Serp-1 at 5 or 15 μg/kg or placebo after either Bare Metal Stent (BMS, A) or Drug Eluting Stent (DES, B) coronary implants after treatment with 5 or 15 mg of Serp-1 or Placebo.
Similar articles
-
Serpins, the vasculature, and viral therapeutics.
Richardson J, Viswanathan K, Lucas A. Richardson J, et al. Front Biosci. 2006 Jan 1;11:1042-56. doi: 10.2741/1862. Front Biosci. 2006. PMID: 16146796 Review.
-
Lucas A, Liu L, Dai E, Bot I, Viswanathan K, Munuswamy-Ramunujam G, Davids JA, Bartee MY, Richardson J, Christov A, Wang H, Macaulay C, Poznansky M, Zhong R, Miller L, Biessen E, Richardson M, Sullivan C, Moyer R, Hatton M, Lomas DA, McFadden G. Lucas A, et al. Adv Exp Med Biol. 2009;666:132-56. doi: 10.1007/978-1-4419-1601-3_11. Adv Exp Med Biol. 2009. PMID: 20054981 Review.
-
Viswanathan K, Bot I, Liu L, Dai E, Turner PC, Togonu-Bickersteth B, Richardson J, Davids JA, Williams JM, Bartee MY, Chen H, van Berkel TJ, Biessen EA, Moyer RW, Lucas AR. Viswanathan K, et al. PLoS One. 2012;7(9):e44694. doi: 10.1371/journal.pone.0044694. Epub 2012 Sep 26. PLoS One. 2012. PMID: 23049756 Free PMC article.
-
Dai E, Viswanathan K, Sun YM, Li X, Liu LY, Togonu-Bickersteth B, Richardson J, Macaulay C, Nash P, Turner P, Nazarian SH, Moyer R, McFadden G, Lucas AR. Dai E, et al. J Biol Chem. 2006 Mar 24;281(12):8041-50. doi: 10.1074/jbc.M509454200. Epub 2006 Jan 9. J Biol Chem. 2006. PMID: 16407226
-
Serpins: Development for Therapeutic Applications.
Lucas A, Yaron JR, Zhang L, Macaulay C, McFadden G. Lucas A, et al. Methods Mol Biol. 2018;1826:255-265. doi: 10.1007/978-1-4939-8645-3_17. Methods Mol Biol. 2018. PMID: 30194606 Review.
Cited by
-
Ambadapadi S, Munuswamy-Ramanujam G, Zheng D, Sullivan C, Dai E, Morshed S, McFadden B, Feldman E, Pinard M, McKenna R, Tibbetts S, Lucas A. Ambadapadi S, et al. J Biol Chem. 2016 Feb 5;291(6):2874-87. doi: 10.1074/jbc.M115.704841. Epub 2015 Nov 30. J Biol Chem. 2016. PMID: 26620556 Free PMC article.
-
Emerging Therapeutic Modalities against COVID-19.
Malik S, Gupta A, Zhong X, Rasmussen TP, Manautou JE, Bahal R. Malik S, et al. Pharmaceuticals (Basel). 2020 Aug 8;13(8):188. doi: 10.3390/ph13080188. Pharmaceuticals (Basel). 2020. PMID: 32784499 Free PMC article. Review.
-
Chen H, Zheng D, Abbott J, Liu L, Bartee MY, Long M, Davids J, Williams J, Feldmann H, Strong J, Grau KR, Tibbetts S, Macaulay C, McFadden G, Thoburn R, Lomas DA, Spinale FG, Virgin HW, Lucas A. Chen H, et al. Antimicrob Agents Chemother. 2013 Sep;57(9):4114-27. doi: 10.1128/AAC.02594-12. Epub 2013 Jun 17. Antimicrob Agents Chemother. 2013. PMID: 23774438 Free PMC article.
-
Chen H, Ambadapadi S, Wakefield D, Bartee M, Yaron JR, Zhang L, Archer-Hartmann SA, Azadi P, Burgin M, Borges C, Zheng D, Ergle K, Muppala V, Morshed S, Rand K, Clapp W, Proudfoot A, Lucas A. Chen H, et al. Sci Rep. 2018 Sep 7;8(1):13433. doi: 10.1038/s41598-018-31779-7. Sci Rep. 2018. PMID: 30194334 Free PMC article.
-
Lucas AR, Verma RK, Dai E, Liu L, Chen H, Kesavalu S, Rivera M, Velsko I, Ambadapadi S, Chukkapalli S, Kesavalu L. Lucas AR, et al. PLoS One. 2014 Oct 29;9(10):e111353. doi: 10.1371/journal.pone.0111353. eCollection 2014. PLoS One. 2014. PMID: 25354050 Free PMC article.
References
-
- Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. - PubMed
-
- Berry LR, Thong B, Chan AK. Comparison of recombinant and plasma-derived antithrombin biodistribution in a rabbit model. Thromb. Haemost. 2009;102:302–308. - PubMed
-
- Cameron* C, Hota-Mitchell* S, Chen L, Barrett J, Cao JX, Macaulay C, Willer D, Evans D, McFadden G. The complete DNA sequence of myxoma virus. Virology. 1999;264:298–318. (*denotes co-authorship) - PubMed
-
- Dai E, Guan H, Liu L, Little S, McFadden G, Vaziri S, Cao H, Ivanova IA, Bocksch L, Lucas AR. Serp-1, a viral anti-inflammatory serpin,regulates cellular serine proteinase and serpin responses to vascular injury. J. Biol. Chem. 2003;278:18563–18572. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous