Challenges in plasma membrane phosphoproteomics - PubMed
Review
Challenges in plasma membrane phosphoproteomics
Benjamin C Orsburn et al. Expert Rev Proteomics. 2011 Aug.
Abstract
The response to extracellular stimuli often alters the phosphorylation state of plasma membrane- associated proteins. In this regard, generation of a comprehensive membrane phosphoproteome can significantly enhance signal transduction and drug mechanism studies. However, analysis of this subproteome is regarded as technically challenging, given the low abundance and insolubility of integral membrane proteins, combined with difficulties in isolating, ionizing and fragmenting phosphopeptides. In this article, we highlight recent advances in membrane and phosphoprotein enrichment techniques resulting in improved identification of these elusive peptides. We also describe the use of alternative fragmentation techniques, and assess their current and future value to the field of membrane phosphoproteomics.
Conflict of interest statement
Financial & competing interests disclosure The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.
No writing assistance was utilized in the production of this manuscript.
Figures

CHAPS: 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; CID: Collision-induced dissociation; CNBr: Cyanogen bromide; ECD:Electron capture dissociation; ETD: Electron transfer dissociation; FACE: Filter-based affinity capturing and elution; FASP: Filter-aided sample preparation; HCD: Higher-energy collisional dissociation; HILIC: Hydrophilic interaction chromatography; IEF: Isoelectric focusing; IMAC: Immobilized metal affinity chromatography; mAb: Monoclonal antibody; MS: Mass spectrometry; NHS: N-hydroxysuccinimide; NL: Neutral loss; SAX: Strong anion chromatography; SCX: Strong cation chromatography; SDS: Sodium dodecyl sulfate; TiO2: Titanium dioxide.

The phosphorylated threonine residue is represented by ‘t’. (A) Collision-induced dissociation of the intact phosphopeptide. (B) ‘Neutral loss’ MS3 performed on the doubly charged fragment at 635.83, representing the loss of phosphoric acid from the threonine residue, represented by ‘T’. (C & D) Higher-energy collisional dissociation and electron transfer dissociation fragmentation of the intact phosphopeptide, respectively.
Similar articles
-
Thomas M, Huck N, Hoehenwarter W, Conrath U, Beckers GJ. Thomas M, et al. Methods Mol Biol. 2015;1306:81-96. doi: 10.1007/978-1-4939-2648-0_6. Methods Mol Biol. 2015. PMID: 25930695
-
Yang C, Zhong X, Li L. Yang C, et al. Electrophoresis. 2014 Dec;35(24):3418-29. doi: 10.1002/elps.201400017. Epub 2014 Jun 16. Electrophoresis. 2014. PMID: 24687451 Free PMC article. Review.
-
Fedjaev M, Parmar A, Xu Y, Vyetrogon K, Difalco MR, Ashmarina M, Nifant'ev I, Posner BI, Pshezhetsky AV. Fedjaev M, et al. Mol Biosyst. 2012 Apr;8(5):1461-71. doi: 10.1039/c2mb05440j. Epub 2012 Feb 23. Mol Biosyst. 2012. PMID: 22362066
-
Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS. Lee DG, et al. J Microbiol. 2015 Apr;53(4):279-87. doi: 10.1007/s12275-015-5021-8. Epub 2015 Apr 8. J Microbiol. 2015. PMID: 25845541
-
[Advances in analysis techniques of phosphoproteome].
Yang J, Zou QM, Cai SX, Guo G, Zhu YH. Yang J, et al. Sheng Wu Gong Cheng Xue Bao. 2003 Mar;19(2):244-8. Sheng Wu Gong Cheng Xue Bao. 2003. PMID: 15966331 Review. Chinese.
Cited by
-
Perspective: Opportunities in recalcitrant, rare and neglected tumors.
Teicher BA. Teicher BA. Oncol Rep. 2013 Sep;30(3):1030-4. doi: 10.3892/or.2013.2581. Epub 2013 Jul 2. Oncol Rep. 2013. PMID: 23820887 Free PMC article.
-
Yoneten KK, Kasap M, Akpinar G, Kanli A, Karaoz E. Yoneten KK, et al. J Membr Biol. 2019 Dec;252(6):587-608. doi: 10.1007/s00232-019-00084-3. Epub 2019 Jul 25. J Membr Biol. 2019. PMID: 31346646
-
Strategies for the Purification of Membrane Proteins.
Butler TJ, Smith SM. Butler TJ, et al. Methods Mol Biol. 2023;2699:477-491. doi: 10.1007/978-1-0716-3362-5_20. Methods Mol Biol. 2023. PMID: 37647009
-
Jiang Q, Wang H, Qiao Z, Hou Y, Sui Z, Zhao B, Liang Z, Jiang B, Zhang Y, Zhang L. Jiang Q, et al. Chem Sci. 2023 Oct 5;14(42):11727-11736. doi: 10.1039/d3sc03725h. eCollection 2023 Nov 1. Chem Sci. 2023. PMID: 37920345 Free PMC article.
-
Exploring aquaporin functions during changes in leaf water potential.
Byrt CS, Zhang RY, Magrath I, Chan KX, De Rosa A, McGaughey S. Byrt CS, et al. Front Plant Sci. 2023 Aug 8;14:1213454. doi: 10.3389/fpls.2023.1213454. eCollection 2023. Front Plant Sci. 2023. PMID: 37615024 Free PMC article. Review.
References
-
- Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol. 2009;49:199–221. - PubMed
-
- Ding SJ, Qian WJ, Smith RD. Quantitative proteomic approaches for studying phosphotyrosine signaling. Expert Rev Proteomics. 2007;4(1):13–23. - PubMed
-
- Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–365. Excellent review on phospho-state regulation and cancer. - PubMed
-
- Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics. 2009;9(6):1451–1468. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources