Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum - PubMed
- ️Sat Jan 01 2011
. 2011 Aug 16;108(33):13752-7.
doi: 10.1073/pnas.1102444108. Epub 2011 Aug 8.
Adam M Guss, Tatiana V Karpinets, Jerry M Parks, Nikolai Smolin, Shihui Yang, Miriam L Land, Dawn M Klingeman, Ashwini Bhandiwad, Miguel Rodriguez Jr, Babu Raman, Xiongjun Shao, Jonathan R Mielenz, Jeremy C Smith, Martin Keller, Lee R Lynd
Affiliations
- PMID: 21825121
- PMCID: PMC3158198
- DOI: 10.1073/pnas.1102444108
Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
Steven D Brown et al. Proc Natl Acad Sci U S A. 2011.
Abstract
Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.
Conflict of interest statement
The authors declare no conflict of interest.
Figures

Mutant C. thermocellum ADHs confers enhanced ethanol tolerance. (A–E) Growth of C. thermocellum DSM 1313 strains with different plasmids that provided a vector-only control, an additional copy of the WT version of adhE, and the mutant adhE gene was monitored by measuring culture turbidity (log10 OD600nm). Strains were grown at 55 °C in increasing amounts of added ethanol. (F) The final culture turbidities after 96 h of growth are presented as a function of ethanol added to the culture from the beginning the experiment. The graphs show the mean and the SE (bars) for three independent dose–response curves, and this experiment was repeated twice.

Homology/MD model of C. thermocellum AdhE double mutant (P704L, H734R). Mutation sites (Leu-704 and Arg-734) and the NAD cofactor and Fe are labeled. The configuration was taken from the end of a 10-ns MD trajectory. Figure was rendered by using VMD (57).
Similar articles
-
Lo J, Zheng T, Hon S, Olson DG, Lynd LR. Lo J, et al. J Bacteriol. 2015 Apr;197(8):1386-93. doi: 10.1128/JB.02450-14. Epub 2015 Feb 9. J Bacteriol. 2015. PMID: 25666131 Free PMC article.
-
Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR. Zheng T, et al. J Bacteriol. 2015 Aug 1;197(15):2610-9. doi: 10.1128/JB.00232-15. Epub 2015 May 26. J Bacteriol. 2015. PMID: 26013492 Free PMC article.
-
Tian L, Cervenka ND, Low AM, Olson DG, Lynd LR. Tian L, et al. Sci Rep. 2019 Feb 11;9(1):1736. doi: 10.1038/s41598-018-37979-5. Sci Rep. 2019. PMID: 30741948 Free PMC article.
-
The role of AdhE on ethanol tolerance and production in Clostridium thermocellum.
Pech-Canul A, Hammer SK, Ziegler SJ, Richardson ID, Sharma BD, Maloney MI, Bomble YJ, Lynd LR, Olson DG. Pech-Canul A, et al. J Biol Chem. 2024 Aug;300(8):107559. doi: 10.1016/j.jbc.2024.107559. Epub 2024 Jul 11. J Biol Chem. 2024. PMID: 39002679 Free PMC article.
-
Cellulase, clostridia, and ethanol.
Demain AL, Newcomb M, Wu JH. Demain AL, et al. Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54. doi: 10.1128/MMBR.69.1.124-154.2005. Microbiol Mol Biol Rev. 2005. PMID: 15755956 Free PMC article. Review.
Cited by
-
Lin L, Ji Y, Tu Q, Huang R, Teng L, Zeng X, Song H, Wang K, Zhou Q, Li Y, Cui Q, He Z, Zhou J, Xu J. Lin L, et al. Biotechnol Biofuels. 2013 Jul 22;6(1):103. doi: 10.1186/1754-6834-6-103. Biotechnol Biofuels. 2013. PMID: 23875846 Free PMC article.
-
Mazzoli R. Mazzoli R. Comput Struct Biotechnol J. 2012 Nov 8;3:e201210007. doi: 10.5936/csbj.201210007. eCollection 2012. Comput Struct Biotechnol J. 2012. PMID: 24688667 Free PMC article. Review.
-
Genetic engineering and enzyme research in lignocellulosic ethanol production.
Ashforth EJ. Ashforth EJ. Protein Cell. 2011 Oct;2(10):776-7. doi: 10.1007/s13238-011-1108-0. Protein Cell. 2011. PMID: 22058031 Free PMC article. No abstract available.
-
Xu T, Li Y, He Z, Van Nostrand JD, Zhou J. Xu T, et al. Front Microbiol. 2017 Sep 7;8:1744. doi: 10.3389/fmicb.2017.01744. eCollection 2017. Front Microbiol. 2017. PMID: 28936208 Free PMC article.
-
Zymomonas mobilis as a model system for production of biofuels and biochemicals.
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M. Yang S, et al. Microb Biotechnol. 2016 Nov;9(6):699-717. doi: 10.1111/1751-7915.12408. Epub 2016 Sep 15. Microb Biotechnol. 2016. PMID: 27629544 Free PMC article. Review.
References
-
- Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol. 2005;16:577–583. - PubMed
-
- la Grange DC, den Haan R, van Zyl WH. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol. 2010;87:1195–1208. - PubMed
-
- Williams TI, Combs JC, Lynn BC, Strobel HJ. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol. 2007;74:422–432. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources