Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers - PubMed
- ️Sat Jan 01 2011
Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers
Shuet Theng Lee et al. Mol Cell. 2011.
Free article
Abstract
Both EZH2 and NF-κB contribute to aggressive breast cancer, yet whether the two oncogenic factors have functional crosstalk in breast cancer is unknown. Here, we uncover an unexpected role of EZH2 in conferring the constitutive activation of NF-κB target gene expression in ER-negative basal-like breast cancer cells. This function of EZH2 is independent of its histone methyltransferase activity but requires the physical interaction with RelA/RelB to promote the expression of NF-κB targets. Intriguingly, EZH2 acts oppositely in ER-positive luminal-like breast cancer cells and represses NF-κB target gene expression by interacting with ER and directing repressive histone methylation on their promoters. Thus, EZH2 functions as a double-facet molecule in breast cancers, either as a transcriptional activator or repressor of NF-κB targets, depending on the cellular context. These findings reveal an additional mechanism by which EZH2 promotes breast cancer progression and underscore the need for developing context-specific strategy for therapeutic targeting of EZH2 in breast cancers.
Copyright © 2011 Elsevier Inc. All rights reserved.
Similar articles
-
Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y. Shi B, et al. Mol Cell Biol. 2007 Jul;27(14):5105-19. doi: 10.1128/MCB.00162-07. Epub 2007 May 14. Mol Cell Biol. 2007. PMID: 17502350 Free PMC article.
-
Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells.
Sun F, Chan E, Wu Z, Yang X, Marquez VE, Yu Q. Sun F, et al. Mol Cancer Ther. 2009 Dec;8(12):3191-202. doi: 10.1158/1535-7163.MCT-09-0479. Mol Cancer Ther. 2009. PMID: 19934278 Free PMC article.
-
Tonini T, D'Andrilli G, Fucito A, Gaspa L, Bagella L. Tonini T, et al. J Cell Physiol. 2008 Feb;214(2):295-300. doi: 10.1002/jcp.21241. J Cell Physiol. 2008. PMID: 17786943 Review.
-
Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2.
Tsang DP, Cheng AS. Tsang DP, et al. J Gastroenterol Hepatol. 2011 Jan;26(1):19-27. doi: 10.1111/j.1440-1746.2010.06447.x. J Gastroenterol Hepatol. 2011. PMID: 21175789 Review.
Cited by
-
Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation.
Doyle EJ, Morey L, Conway E. Doyle EJ, et al. Front Cell Dev Biol. 2022 Aug 29;10:986319. doi: 10.3389/fcell.2022.986319. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36105358 Free PMC article. Review.
-
Habbout K, Omura J, Awada C, Bourgeois A, Grobs Y, Krishna V, Breuils-Bonnet S, Tremblay E, Mkannez G, Martineau S, Nadeau V, Roux-Dalvai F, Orcholski M, Jeyaseelan J, Gutstein D, Potus F, Provencher S, Bonnet S, Paulin R, Boucherat O. Habbout K, et al. Int J Mol Sci. 2021 Mar 15;22(6):2957. doi: 10.3390/ijms22062957. Int J Mol Sci. 2021. PMID: 33803922 Free PMC article.
-
Bae WK, Hennighausen L. Bae WK, et al. Mol Cell Endocrinol. 2014 Jan 25;382(1):593-597. doi: 10.1016/j.mce.2013.05.002. Epub 2013 May 17. Mol Cell Endocrinol. 2014. PMID: 23684884 Free PMC article. Review.
-
How the cell cycle impacts chromatin architecture and influences cell fate.
Ma Y, Kanakousaki K, Buttitta L. Ma Y, et al. Front Genet. 2015 Feb 3;6:19. doi: 10.3389/fgene.2015.00019. eCollection 2015. Front Genet. 2015. PMID: 25691891 Free PMC article.
-
Jiang C, Guo Q, Jin Y, Xu JJ, Sun ZM, Zhu DC, Lin JH, Tian NF, Sun LJ, Zhang XL, Wu YS. Jiang C, et al. EBioMedicine. 2019 Oct;48:619-629. doi: 10.1016/j.ebiom.2019.10.006. Epub 2019 Oct 17. EBioMedicine. 2019. PMID: 31631036 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases