T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease - PubMed
. 2012 Mar;142(3):552-61.
doi: 10.1053/j.gastro.2011.11.021. Epub 2011 Nov 19.
Affiliations
- PMID: 22108197
- DOI: 10.1053/j.gastro.2011.11.021
T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease
Michael Bodd et al. Gastroenterology. 2012 Mar.
Abstract
Background & aims: Celiac disease is a diet-induced, T cell-mediated enteropathy. The HLA variant DQ2.5 increases risk of the disease, and the homologous DQ2.2 confers a lower level of risk. As many as 5% of patients with celiac disease carry DQ2.2 without any other risk alleles. Epitopes commonly recognized by T cells of patients with HLA-DQ2.5 bind stably to DQ2.5 but unstably to DQ2.2. We investigated the response to gluten in patients with HLA-DQ2.2.
Methods: We generated intestinal T-cell lines and clones from 7 patients with HLA-DQ2.2 (but not DQ2.5) and characterized the responses of the cells to gluten. The epitope off-rate was evaluated by gel filtration and T cell-based assays. Peptide binding to DQ2.2 was studied with peptide substitutes and DQ2 mutants.
Results: Patients with DQ2.2 and no other risk alleles had gluten-reactive T cells that did not respond to the common DQ2.5-restricted T-cell epitopes. Instead, many of the T cells responded to a distinct epitope that was not recognized by those from patients with HLA-DQ2.5. This immunodominant epitope bound stably to DQ2.2. A serine residue at P3 was required for the stable binding. The effect of this residue related to a polymorphism at DQα22 that was previously shown to determine stable binding of peptides to DQ2.5.
Conclusions: High levels of kinetic stability of peptide-major histocompatibility complexes are required to generate T-cell responses to gluten in celiac disease; the lower risk from DQ2.2 relates to constraints imposed on gluten peptides to stably bind this HLA molecule. These observations increase our understanding of the role of the major histocompatibility complex in determining T-cell responses in patients with celiac disease and are important for peptide-based vaccination strategies.
Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Bergseng E, Dørum S, Arntzen MØ, Nielsen M, Nygård S, Buus S, de Souza GA, Sollid LM. Bergseng E, et al. Immunogenetics. 2015 Feb;67(2):73-84. doi: 10.1007/s00251-014-0819-9. Epub 2014 Dec 12. Immunogenetics. 2015. PMID: 25502872 Free PMC article.
-
de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, Jackson DC, Ladhams J, Allison J, McCluskey J. de Kauwe AL, et al. J Immunol. 2009 Jun 15;182(12):7440-50. doi: 10.4049/jimmunol.0900233. J Immunol. 2009. PMID: 19494267
-
Kapoerchan VV, Wiesner M, Hillaert U, Drijfhout JW, Overhand M, Alard P, van der Marel GA, Overkleeft HS, Koning F. Kapoerchan VV, et al. Mol Immunol. 2010 Feb;47(5):1091-7. doi: 10.1016/j.molimm.2009.10.036. Epub 2009 Dec 3. Mol Immunol. 2010. PMID: 19962195
-
The molecular basis of celiac disease.
Koning F. Koning F. J Mol Recognit. 2003 Sep-Oct;16(5):333-6. doi: 10.1002/jmr.641. J Mol Recognit. 2003. PMID: 14523946 Review.
-
Celiac disease: from pathogenesis to novel therapies.
Schuppan D, Junker Y, Barisani D. Schuppan D, et al. Gastroenterology. 2009 Dec;137(6):1912-33. doi: 10.1053/j.gastro.2009.09.008. Epub 2009 Sep 18. Gastroenterology. 2009. PMID: 19766641 Review.
Cited by
-
Frequency of HLA-DQ, susceptibility genotypes for celiac disease, in Brazilian newborns.
Almeida FC, Gandolfi L, Costa KN, Picanço MRA, Almeida LM, Nóbrega YKM, Pratesi R, Pratesi CB, Selleski N. Almeida FC, et al. Mol Genet Genomic Med. 2018 Sep;6(5):779-784. doi: 10.1002/mgg3.444. Epub 2018 Jul 16. Mol Genet Genomic Med. 2018. PMID: 30014583 Free PMC article. Clinical Trial.
-
The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases.
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. Vizcaíno JA, et al. Mol Cell Proteomics. 2020 Jan;19(1):31-49. doi: 10.1074/mcp.R119.001743. Epub 2019 Nov 19. Mol Cell Proteomics. 2020. PMID: 31744855 Free PMC article.
-
Ekong UD, Antala S, Bow L, Sese D, Morotti R, Rodriguez-Davalos M, Gan G, Deng Y, Emre SH. Ekong UD, et al. Exp Clin Transplant. 2019 Jan;17(Suppl 1):6-17. doi: 10.6002/ect.MESOT2018.L30. Exp Clin Transplant. 2019. PMID: 30777518 Free PMC article.
-
Bergseng E, Dørum S, Arntzen MØ, Nielsen M, Nygård S, Buus S, de Souza GA, Sollid LM. Bergseng E, et al. Immunogenetics. 2015 Feb;67(2):73-84. doi: 10.1007/s00251-014-0819-9. Epub 2014 Dec 12. Immunogenetics. 2015. PMID: 25502872 Free PMC article.
-
Latest in vitro and in vivo models of celiac disease.
Stoven S, Murray JA, Marietta EV. Stoven S, et al. Expert Opin Drug Discov. 2013 Apr;8(4):445-57. doi: 10.1517/17460441.2013.761203. Epub 2013 Jan 8. Expert Opin Drug Discov. 2013. PMID: 23293929 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials