The turnover of cytochrome c in different skeletal-muscle fibre types of the rat - PubMed
- ️Mon Jan 01 1979
The turnover of cytochrome c in different skeletal-muscle fibre types of the rat
R L Terjung. Biochem J. 1979.
Abstract
The turnover of cytochrome c was determined in the three skeletal-muscle fibre types of adult male rats by a kinetic analysis that followed the time course of cytochrome c content change. Confirming evidence was obtained with double-labelling studies using delta-aminolaevulinate. Cytochrome c turnover was most rapid in the low-oxidative fast-twitch white fibre [t1/2 (half-life) about 4 days], slowest in the high-oxidative fast-twitch red fibre (t1/2 9-10 days) and relatively rapid in the high-oxidative slow-twitch red fibre (t1/2 5-6 days). Thus cytochrome c turnover does not strictly conform to either the appearance (i.e. red or white) or the contractile characteristics (i.e. fast or slow) of the muscle fibres. The synthesis rates needed to maintain the corresponding cytochrome c concentrations, however, were similarly high in the two mitochondria-rich red fibre types. These data illustrate that both the synthesis and degradation processes are important in establishing the cytochrome c concentrations that distinguish the different skeletal-muscle fibre types.
Similar articles
-
Cytochrome c turnover in rat skeletal muscles.
Booth FW, Holloszy JO. Booth FW, et al. J Biol Chem. 1977 Jan 25;252(2):416-9. J Biol Chem. 1977. PMID: 188815
-
Separate turnover of cytochrome c and myoglobin in the red types of skeletal muscle.
Hickson RC, Rosenkoetter MA. Hickson RC, et al. Am J Physiol. 1981 Sep;241(3):C140-4. doi: 10.1152/ajpcell.1981.241.3.C140. Am J Physiol. 1981. PMID: 6269433
-
Cytochrome c turnover in skeletal muscle.
Terjung RL. Terjung RL. Biochem Biophys Res Commun. 1975 Sep 2;66(1):173-8. doi: 10.1016/s0006-291x(75)80310-x. Biochem Biophys Res Commun. 1975. PMID: 169843 No abstract available.
-
Biochemical adaptations in skeletal muscle of trained thyroidectomized rats.
Terjung RL, Koerner JE. Terjung RL, et al. Am J Physiol. 1976 May;230(5):1194-7. doi: 10.1152/ajplegacy.1976.230.5.1194. Am J Physiol. 1976. PMID: 179330
-
Brinkworth RI, Masters CJ. Brinkworth RI, et al. Biochim Biophys Acta. 1978 Apr 19;540(1):1-12. doi: 10.1016/0304-4165(78)90429-4. Biochim Biophys Acta. 1978. PMID: 147711
Cited by
-
Mitochondrial division in rat cardiomyocytes: an electron microscope study.
Fujioka H, Tandler B, Hoppel CL. Fujioka H, et al. Anat Rec (Hoboken). 2012 Sep;295(9):1455-61. doi: 10.1002/ar.22523. Epub 2012 Jul 2. Anat Rec (Hoboken). 2012. PMID: 22753088 Free PMC article.
-
Habituation Training Improves Locomotor Performance in a Forced Running Wheel System in Rats.
Toval A, Baños R, De la Cruz E, Morales-Delgado N, Pallarés JG, Ayad A, Tseng KY, Ferran JL. Toval A, et al. Front Behav Neurosci. 2017 Mar 8;11:42. doi: 10.3389/fnbeh.2017.00042. eCollection 2017. Front Behav Neurosci. 2017. PMID: 28337132 Free PMC article.
-
Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy.
Ryan TE, Southern WM, Brizendine JT, McCully KK. Ryan TE, et al. Med Sci Sports Exerc. 2013 Dec;45(12):2346-52. doi: 10.1249/MSS.0b013e31829a726a. Med Sci Sports Exerc. 2013. PMID: 23669881 Free PMC article.
-
The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism?
van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT. van Wessel T, et al. Eur J Appl Physiol. 2010 Nov;110(4):665-94. doi: 10.1007/s00421-010-1545-0. Epub 2010 Jul 3. Eur J Appl Physiol. 2010. PMID: 20602111 Free PMC article. Review.
-
Neufer PD. Neufer PD. Sports Med. 1989 Nov;8(5):302-20. doi: 10.2165/00007256-198908050-00004. Sports Med. 1989. PMID: 2692122 Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources