Morphological evolution in land plants: new designs with old genes - PubMed
- ️Sun Jan 01 2012
Review
Morphological evolution in land plants: new designs with old genes
Nuno D Pires et al. Philos Trans R Soc Lond B Biol Sci. 2012.
Abstract
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.
Figures

Phylogenetic relationships between the major groups of extant plants. Key events that occurred during plant evolution are indicated; in cases where enough functional data are not available, the minimum origin is indicated by an arrowhead. The estimated divergence times are indicated in millions of years ago (Ma). The phylogenetic relationships between different plant groups are based on earlier studies [–7]. The estimated divergence times are based on previous studies [–11]. See also the main text for more details.
Similar articles
-
Evolution of the plant body plan.
Szövényi P, Waller M, Kirbis A. Szövényi P, et al. Curr Top Dev Biol. 2019;131:1-34. doi: 10.1016/bs.ctdb.2018.11.005. Epub 2018 Dec 14. Curr Top Dev Biol. 2019. PMID: 30612613 Review.
-
Development and genetics in the evolution of land plant body plans.
Jill Harrison C. Jill Harrison C. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713):20150490. doi: 10.1098/rstb.2015.0490. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 27994131 Free PMC article. Review.
-
Evolution and co-option of developmental regulatory networks in early land plants.
Bowman JL, Briginshaw LN, Florent SN. Bowman JL, et al. Curr Top Dev Biol. 2019;131:35-53. doi: 10.1016/bs.ctdb.2018.10.001. Epub 2018 Dec 3. Curr Top Dev Biol. 2019. PMID: 30612623 Review.
-
Evolution of land plants: insights from molecular studies on basal lineages.
Ishizaki K. Ishizaki K. Biosci Biotechnol Biochem. 2017 Jan;81(1):73-80. doi: 10.1080/09168451.2016.1224641. Epub 2016 Sep 5. Biosci Biotechnol Biochem. 2017. PMID: 27595342 Review.
-
Major transitions in the evolution of early land plants: a bryological perspective.
Ligrone R, Duckett JG, Renzaglia KS. Ligrone R, et al. Ann Bot. 2012 Apr;109(5):851-71. doi: 10.1093/aob/mcs017. Epub 2012 Feb 22. Ann Bot. 2012. PMID: 22356739 Free PMC article. Review.
Cited by
-
Shooting through time: new insights from transcriptomic data.
Harrison CJ. Harrison CJ. Trends Plant Sci. 2015 Aug;20(8):468-70. doi: 10.1016/j.tplants.2015.06.003. Epub 2015 Jun 26. Trends Plant Sci. 2015. PMID: 26120036 Free PMC article.
-
Root adaptations to soils with low fertility and aluminium toxicity.
Rao IM, Miles JW, Beebe SE, Horst WJ. Rao IM, et al. Ann Bot. 2016 Oct 1;118(4):593-605. doi: 10.1093/aob/mcw073. Ann Bot. 2016. PMID: 27255099 Free PMC article.
-
A Strigolactone Signal Inhibits Secondary Lateral Root Development in Rice.
Sun H, Xu F, Guo X, Wu D, Zhang X, Lou M, Luo F, Zhao Q, Xu G, Zhang Y. Sun H, et al. Front Plant Sci. 2019 Nov 22;10:1527. doi: 10.3389/fpls.2019.01527. eCollection 2019. Front Plant Sci. 2019. PMID: 31824543 Free PMC article.
-
Evolution of Rubisco activase gene in plants.
Nagarajan R, Gill KS. Nagarajan R, et al. Plant Mol Biol. 2018 Jan;96(1-2):69-87. doi: 10.1007/s11103-017-0680-y. Epub 2017 Nov 14. Plant Mol Biol. 2018. PMID: 29139059
-
Changing expressions: a hypothesis for the origin of the vascular plant life cycle.
Kenrick P. Kenrick P. Philos Trans R Soc Lond B Biol Sci. 2018 Feb 5;373(1739):20170149. doi: 10.1098/rstb.2017.0149. Philos Trans R Soc Lond B Biol Sci. 2018. PMID: 29254970 Free PMC article. Review.
References
-
- Becker B., Marin B. 2009. Streptophyte algae and the origin of embryophytes. Ann. Bot. 103, 999–100410.1093/aob/mcp044 (doi:10.1093/aob/mcp044) - DOI - DOI - PMC - PubMed
-
- Kenrick P., Wellman C. H., Schneider H., Edgecombe G. D. 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Phil. Trans. R. Soc. B 367, 519–53610.1098/rstb.2011.0271 (doi:10.1098/rstb.2011.0271) - DOI - DOI - PMC - PubMed
-
- Karol K. G., McCourt R. M., Cimino M. T., Delwiche C. F. 2001. The closest living relatives of land plants. Science 294, 2351–235310.1126/science.1065156 (doi:10.1126/science.1065156) - DOI - DOI - PubMed
-
- Lewis L., McCourt R. M. 2004. Green algae and the origin of land plants. Am. J. Bot. 91, 1535–155610.3732/ajb.91.10.1535 (doi:10.3732/ajb.91.10.1535) - DOI - DOI - PubMed
-
- Chaw S.-M., Parkinson C. L., Cheng Y., Vincent T. M., Palmer J. D. 2000. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl Acad. Sci. USA 97, 4086–409110.1073/pnas.97.8.4086 (doi:10.1073/pnas.97.8.4086) - DOI - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources