Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression - PubMed
Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression
Björn Kruspig et al. Cell Mol Life Sci. 2012 Jun.
Abstract
Amplification of the MycN oncogene characterizes a subset of highly aggressive neuroblastomas, the most common extracranial solid tumor of childhood. However, the significance of MycN amplification for tumor cell survival is controversial, since down-regulation of MycN was found to decrease markedly neuroblastoma sensitivity towards conventional anticancer drugs, cisplatin, and doxorubicin. Here, we show that a redox-silent analogue of vitamin E, α-tocopheryl succinate (α-TOS), which triggers apoptotic cell death via targeting mitochondria, can kill tumor cells irrespective of their MycN expression level. In cells overexpressing MycN, as well as cells in which MycN was switched off, α-TOS stimulated rapid entry of Ca(2+) into the cytosol, compromised Ca(2+) buffering capacity of the mitochondria and sensitized them towards mitochondrial permeability transition and subsequent apoptotic cell death. Prevention of mitochondrial Ca(2+) accumulation or chelation of cytosolic Ca(2+) rescued the cells. Thus, targeting mitochondria might be advantageous for the elimination of tumor cells with otherwise dormant apoptotic pathways.
Figures

Effect of MycN downregulation on apoptotic manifestations in Tet21 N cells treated with 10 µg/ml cisplatin for 16 h. a Incubation of Tet21 N cells with 0.1 μg/ml doxycycline blocks expression of MycN oncogene; b switching off MycN suppresses cytochrome c release, caspase-3-like activity (c), number of floating cells (d), processing of caspase-3 and PARP cleavage in response to 10 μg/ml cisplatin (e), black bars: MycN overexpressing cells, white bars: MycN non-expressing Tet21 N cells, *p < 0.05; f analysis of apoptotic morphology in cisplatin-treated MycN(+) and MycN(−) Tet21 N cells; numbers show the percentage of cells with apoptotic nuclei. Number of counted cells: 720 for MycN(+) cells and 450 for MycN(−) cells; g analysis of PS externalization in MycN(+) and MycN(−) Tet21 N cells in response to 10 μg/ml cisplatin; h upper blot: 10 μg/ml cisplatin-stimulated expression of p53 in MycN(+) and MycN(−) cells; middle blot: phosphorylation of p53; lower blot: cisplatin-induced expression of Bak

Effect of MycN downregulation on apoptotic manifestations in Tet21 N cells treated with 60 μM α-TOS for 16 h. a α-TOS equally stimulates cell death assessed by the release of cytochrome c (a), caspase-3-like activity (b), the number of floating cells (c), and processing of caspase-3 (d) in MycN(+) (black bars) and MycN(−) (white bars) Tet21 N cells; e α-TOS-induced release of AIF from mitochondria in MycN(+) and MycN(−) Tet21 N cells; f analysis of apoptotic morphology in α-TOS-treated MycN(+) and MycN(−) Tet21 N cells. Numbers show the percentage of cells with apoptotic nuclei. Number of counted cells: 560 for MycN(+) cells and 260 for MycN(−) cells; g upper blot: p53 expression, lower blot: Bak expression in α-TOS treated MycN(+) and MycN(−) Tet21 N cells; h switching off MycN attenuated α-TOS-induced expression of Noxa; i α-TOS-induced cytochrome c release, caspase-3 cleavage, and MycN expression in various NB cells. Lower blot: loading control

Alteration of cytosolic and mitochondrial Ca2+ homeostasis in NB cells. a 60 μM α-TOS stimulates Ca2+ transients in MycN(+) and MycN(−) cells. b Chelation of intracellular Ca2+ by BAPTA AM attenuates caspase-3-like activity in Tet21 N cells, *p < 0.05; c ROS accumulation in MycN(+) cells treated with 60 μM α-TOS for 16 h. d Fold increase in ROS content after 16 h incubation of MycN(+) and MycN(−) cells with 60 μM α-TOS, *p < 0.05. The results were calculated as average from at least ten responding cells. e Incubation with 60 μM α-TOS for 16 h decreases the content of SH-groups in NB cells; NAC, 5 mM, *p < 0.05; f NAC and cyclosporin A (5 μM) prevent α-TOS-mediated stimulation of caspase-3-like activity

Mitochondrial Ca2+ accumulation in NB cells with different level of MycN expression. a Accumulation of Ca2+ by mitochondria in digitonin-permeabilized MycN(+) cells. Pulses of Ca2+ (20 nmol) were added sequentially until MPT was induced and the accumulated Ca2+ was released; b effect of 60 μM α-TOS and 10 μg/ml cisplatin on mitochondrial Ca2+ capacity (the threshold level of Ca2+ required for MPT induction) in MycN(+) and MycN(−) Tet21 N cells, *p < 0.05
Similar articles
-
Montemurro L, Raieli S, Angelucci S, Bartolucci D, Amadesi C, Lampis S, Scardovi AL, Venturelli L, Nieddu G, Cerisoli L, Fischer M, Teti G, Falconi M, Pession A, Hrelia P, Tonelli R. Montemurro L, et al. Cancer Res. 2019 Dec 15;79(24):6166-6177. doi: 10.1158/0008-5472.CAN-19-0008. Epub 2019 Oct 15. Cancer Res. 2019. PMID: 31615807
-
Wyce A, Ganji G, Smitheman KN, Chung CW, Korenchuk S, Bai Y, Barbash O, Le B, Craggs PD, McCabe MT, Kennedy-Wilson KM, Sanchez LV, Gosmini RL, Parr N, McHugh CF, Dhanak D, Prinjha RK, Auger KR, Tummino PJ. Wyce A, et al. PLoS One. 2013 Aug 23;8(8):e72967. doi: 10.1371/journal.pone.0072967. eCollection 2013. PLoS One. 2013. PMID: 24009722 Free PMC article.
-
Ikegaki N, Hicks SL, Regan PL, Jacobs J, Jumbo AS, Leonhardt P, Rappaport EF, Tang XX. Ikegaki N, et al. Int J Oncol. 2014 Jan;44(1):35-43. doi: 10.3892/ijo.2013.2148. Epub 2013 Oct 25. Int J Oncol. 2014. PMID: 24173829 Free PMC article.
-
MYCN, neuroblastoma and focal adhesion kinase (FAK).
Beierle EA. Beierle EA. Front Biosci (Elite Ed). 2011 Jan 1;3(2):421-33. doi: 10.2741/e257. Front Biosci (Elite Ed). 2011. PMID: 21196322 Free PMC article. Review.
-
The MYCN oncoprotein as a drug development target.
Lu X, Pearson A, Lunec J. Lu X, et al. Cancer Lett. 2003 Jul 18;197(1-2):125-30. doi: 10.1016/s0304-3835(03)00096-x. Cancer Lett. 2003. PMID: 12880971 Review.
Cited by
-
Kulikov AV, Vdovin AS, Zhivotovsky B, Gogvadze V. Kulikov AV, et al. Cell Mol Life Sci. 2014 Jun;71(12):2325-33. doi: 10.1007/s00018-013-1489-8. Epub 2013 Oct 19. Cell Mol Life Sci. 2014. PMID: 24142346 Free PMC article.
-
Tam KW, Ho CT, Tu SH, Lee WJ, Huang CS, Chen CS, Wu CH, Lee CH, Ho YS. Tam KW, et al. Oncotarget. 2017 Dec 17;9(4):4593-4606. doi: 10.18632/oncotarget.23390. eCollection 2018 Jan 12. Oncotarget. 2017. PMID: 29435127 Free PMC article.
-
Distinct effects of etoposide on glutamine-addicted neuroblastoma.
Valter K, Maximchik P, Abdrakhmanov A, Senichkin V, Zhivotovsky B, Gogvadze V. Valter K, et al. Cell Mol Life Sci. 2020 Mar;77(6):1197-1207. doi: 10.1007/s00018-019-03232-z. Epub 2019 Aug 7. Cell Mol Life Sci. 2020. PMID: 31392350 Free PMC article.
-
Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach.
Chen L, Cui H. Chen L, et al. Int J Mol Sci. 2015 Sep 22;16(9):22830-55. doi: 10.3390/ijms160922830. Int J Mol Sci. 2015. PMID: 26402672 Free PMC article. Review.
-
Lei X, Li K, Liu Y, Wang ZY, Ruan BJ, Wang L, Xiang A, Wu D, Lu Z. Lei X, et al. Int J Nanomedicine. 2017 Aug 8;12:5701-5715. doi: 10.2147/IJN.S135849. eCollection 2017. Int J Nanomedicine. 2017. PMID: 28848348 Free PMC article.
References
-
- Hagland H, Nikolaisen J, Hodneland LI, Gjertsen BT, Bruserud O, Tronstad KJ. Targeting mitochondria in the treatment of human cancer: a coordinated attack against cancer cell energy metabolism and signalling. Expert Opin Ther Targets. 2007;11:1055–1069. doi: 10.1517/14728222.11.8.1055. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous