Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes - PubMed
. 2012 Apr;55(4):1205-17.
doi: 10.1007/s00125-012-2467-7. Epub 2012 Feb 4.
Affiliations
- PMID: 22311416
- DOI: 10.1007/s00125-012-2467-7
Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes
D K Kim et al. Diabetologia. 2012 Apr.
Abstract
Aims/hypothesis: Translationally controlled tumour protein (TCTP) is thought to be involved in cell growth by regulating mTOR complex 1 (mTORC1) signalling. As diabetes characteristically induces podocyte hypertrophy and mTORC1 has been implicated in this process, TCTP may have a role in the pathogenesis of diabetes-induced podocyte hypertrophy.
Methods: We investigated the effects and molecular mechanisms of TCTP in diabetic mice and in high glucose-stimulated cultured podocytes. To characterise the role of TCTP, we conducted lentivirus-mediated gene silencing of TCTP both in vivo and in vitro.
Results: Glomerular production of TCTP was significantly higher in streptozotocin induced-diabetic DBA/2J mice than in control animals. Double-immunofluorescence staining for TCTP and synaptopodin revealed that podocyte was the principal cell responsible for this increase. TCTP knockdown attenuated the activation of mTORC1 downstream effectors and the overproduction of cyclin-dependent kinase inhibitors (CKIs) in diabetic glomeruli, along with a reduction in proteinuria and a decrease in the sizes of podocytes as well as glomeruli. In addition, knockdown of TCTP in db/db mice prevented the development of diabetic nephropathy, as indicated by the amelioration of proteinuria, mesangial expansion, podocytopenia and glomerulosclerosis. In accordance with the in vivo data, TCTP inhibition abrogated high glucose-induced hypertrophy in cultured podocytes, which was accompanied by the downregulation of mTORC1 effectors and CKIs.
Conclusions/interpretation: These findings suggest that TCTP might play an important role in the process of podocyte hypertrophy under diabetic conditions via the regulation of mTORC1 activity and the induction of cell-cycle arrest.
Similar articles
-
Role of mTOR in podocyte function and diabetic nephropathy in humans and mice.
Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, Debreczeni-Mór A, Lindenmeyer MT, Rastaldi MP, Hartleben G, Wiech T, Fornoni A, Nelson RG, Kretzler M, Wanke R, Pavenstädt H, Kerjaschki D, Cohen CD, Hall MN, Rüegg MA, Inoki K, Walz G, Huber TB. Gödel M, et al. J Clin Invest. 2011 Jun;121(6):2197-209. doi: 10.1172/JCI44774. Epub 2011 May 23. J Clin Invest. 2011. PMID: 21606591 Free PMC article.
-
Menini S, Iacobini C, Oddi G, Ricci C, Simonelli P, Fallucca S, Grattarola M, Pugliese F, Pesce C, Pugliese G. Menini S, et al. Diabetologia. 2007 Dec;50(12):2591-9. doi: 10.1007/s00125-007-0821-y. Epub 2007 Sep 28. Diabetologia. 2007. PMID: 17901943
-
Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, Blattner SM, Ikenoue T, Rüegg MA, Hall MN, Kwiatkowski DJ, Rastaldi MP, Huber TB, Kretzler M, Holzman LB, Wiggins RC, Guan KL. Inoki K, et al. J Clin Invest. 2011 Jun;121(6):2181-96. doi: 10.1172/JCI44771. Epub 2011 May 23. J Clin Invest. 2011. PMID: 21606597 Free PMC article.
-
Podocyte hypertrophy in diabetic nephropathy.
Kim NH. Kim NH. Nephrology (Carlton). 2005 Oct;10 Suppl:S14-6. doi: 10.1111/j.1440-1797.2005.00450.x. Nephrology (Carlton). 2005. PMID: 16174280 Review.
-
Podocytes, signaling pathways, and vascular factors in diabetic kidney disease.
Brosius FC, Coward RJ. Brosius FC, et al. Adv Chronic Kidney Dis. 2014 May;21(3):304-10. doi: 10.1053/j.ackd.2014.03.011. Adv Chronic Kidney Dis. 2014. PMID: 24780459 Free PMC article. Review.
Cited by
-
Villafuerte BC, Barati MT, Rane MJ, Isaacs S, Li M, Wilkey DW, Merchant ML. Villafuerte BC, et al. Biochim Biophys Acta Proteins Proteom. 2017 Feb;1865(2):186-194. doi: 10.1016/j.bbapap.2016.10.015. Epub 2016 Nov 3. Biochim Biophys Acta Proteins Proteom. 2017. PMID: 27816562 Free PMC article.
-
Diabetic condition induces hypertrophy and vacuolization in glomerular parietal epithelial cells.
Kawaguchi T, Hasegawa K, Yasuda I, Muraoka H, Umino H, Tokuyama H, Hashiguchi A, Wakino S, Itoh H. Kawaguchi T, et al. Sci Rep. 2021 Jan 15;11(1):1515. doi: 10.1038/s41598-021-81027-8. Sci Rep. 2021. PMID: 33452384 Free PMC article.
-
14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila.
Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW. Le TP, et al. Nat Commun. 2016 May 6;7:11501. doi: 10.1038/ncomms11501. Nat Commun. 2016. PMID: 27151460 Free PMC article.
-
Insights into the role and regulation of TCTP in skeletal muscle.
Goodman CA, Coenen AM, Frey JW, You JS, Barker RG, Frankish BP, Murphy RM, Hornberger TA. Goodman CA, et al. Oncotarget. 2017 Mar 21;8(12):18754-18772. doi: 10.18632/oncotarget.13009. Oncotarget. 2017. PMID: 27813490 Free PMC article.
-
Conti S, Remuzzi G, Benigni A, Tomasoni S. Conti S, et al. Int J Mol Sci. 2022 Feb 1;23(3):1699. doi: 10.3390/ijms23031699. Int J Mol Sci. 2022. PMID: 35163622 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous