Klf15 orchestrates circadian nitrogen homeostasis - PubMed
- ️Sun Jan 01 2012
. 2012 Mar 7;15(3):311-23.
doi: 10.1016/j.cmet.2012.01.020.
Frank A J L Scheer, Jürgen A Ripperger, Saptarsi M Haldar, Yuan Lu, Domenick A Prosdocimo, Sam J Eapen, Betty L Eapen, Yingjie Cui, Ganapathi H Mahabeleshwar, Hyoung-gon Lee, Mark A Smith, Gemma Casadesus, Eric M Mintz, Haipeng Sun, Yibin Wang, Kathryn M Ramsey, Joseph Bass, Steven A Shea, Urs Albrecht, Mukesh K Jain
Affiliations
- PMID: 22405069
- PMCID: PMC3299986
- DOI: 10.1016/j.cmet.2012.01.020
Klf15 orchestrates circadian nitrogen homeostasis
Darwin Jeyaraj et al. Cell Metab. 2012.
Abstract
Diurnal variation in nitrogen homeostasis is observed across phylogeny. But whether these are endogenous rhythms, and if so, molecular mechanisms that link nitrogen homeostasis to the circadian clock remain unknown. Here, we provide evidence that a clock-dependent peripheral oscillator, Krüppel-like factor 15 transcriptionally coordinates rhythmic expression of multiple enzymes involved in mammalian nitrogen homeostasis. In particular, Krüppel-like factor 15-deficient mice exhibit no discernable amino acid rhythm, and the rhythmicity of ammonia to urea detoxification is impaired. Of the external cues, feeding plays a dominant role in modulating Krüppel-like factor 15 rhythm and nitrogen homeostasis. Further, when all behavioral, environmental and dietary cues were controlled in humans, nitrogen homeostasis exhibited an endogenous circadian rhythmicity. Thus, in mammals, nitrogen homeostasis exhibits circadian rhythmicity, and is orchestrated by Krüppel-like factor 15.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures

(a) Klf15 mRNA accumulation from WT mice livers (n=5 per time point). (b) Representative KLF15 and U2AF65 protein expression from WT and Klf15-null liver nuclei. (c) KLF15 protein densitometry from three replicates. (d) Klf15-luciferase is induced on a dose dependent fashion by CLOCK/BMAL1, and inset illustrates four “E Box” motifs in the Klf15 promoter (−5 kb). (e) Klf15 mRNA accumulation in WT and Bmal1 KO livers. (g) (h) Rhythmic binding of BMAL1 on the Klf15 promoter (n=3 per time point). Data presented as mean ± SEM.

(a–d) Plasma total amino acid pool, alanine, BCAA and urea measured every four hours over a circadian period after placing mice in constant darkness for 38 hours (n=5 per time point). The data are double-plotted, and ANOVA was used to determine rhythmicity. (e) Cumulative food intake measured every 5 minutes in WT and Klf15-null mice (n=4 per group). (f) Total body weights of WT and Klf15-null mice (n=4 per group). (g, h) Plasma total AA pool, urea from WT and Klf15-null mice measured every four hours under L/D and double plotted to illustrate rhythmicity (n=5 per group per time point). Data presented as mean ± SEM.

Schematic illustrates the inter-organ transport, utilization of amino acids “the glucose-alanine cycle.” (a, b) Skeletal muscle Alt and Bcat2 expression in WT and KLF15-null mice (n=4 per group per time point). (c, d) Plasma alanine and BCAA in WT and Klf15-null mice (n=5 per group per time point) (e) Plasma glucose in WT and Klf15-null mice (n=5 per group per time point). (f) ChIP for KLF15 on Alt promoter (n=3 per time point). (# p<0.05 at all time points between WT and Klf15-null). Data presented as mean ± SEM.

Schematic illustrates the excretion of nitrogenous waste products, i.e., “the urea cycle.” (a, b) Plasma glutamate, ammonia in WT and Klf15-null mice (n=5 per group per time point). (c) Otc expression in WT and Klf15-null livers (n=4 per group per time point). (d) Plasma ornithine in WT and Klf15-null mice (n=5 per group per time point). (e) OTC enzymatic activity measured from liver mitochondrial extracts from WT and KLF15-null mice (n=4 per group). (f, g) Urinary levels of urea and ammonia in WT and KLF15-null mice (n=5 per group). (h) ChIP for KLF15 on the Otc promoter (n=3 per time point). (# p<0.05 at all time points between WT and Klf15-null). (i–k)Results of neurobehavioral testing for (i) Y-maze, a test of working memory (n=3 per group) (j) Fear conditioning during contextual changes (hippocampal function) and altered cues (amygdalar function) (n=8 per group) and (k) Morris water maze test, a test of hippocampal function (n=8 per group). Data presented as mean ± SEM.

Following ad-libitum or feeding restricted to the light-phase (ZT3-ZT9) for one month: (a, b & c) liver expression of Clock, Per2 and Cry1, (d, e) liver and skeletal muscle expression of Klf15, (f, g & h) total plasma AA, ammonia and urea concentrations (I, j) skeletal muscle Alt and Bcat2 expression (k) liver expression of Otc (l, m, n & o) plasma ornithine, alanine, BCAA, insulin (n=5 per group per time point). Data presented as mean ± SEM.

Following one week of high protein diet (70% casein) or normal diet (18% protein) WT and Klf15-null (a) blood glucose (n=5 per group), (b) plasma amino acids, (c, d) liver expression of Klf15, Alt, Otc (d) plasma ammonia and (e) plasma urea. Data presented as mean ± SEM.

Fasting total plasma amino acid pool, alanine, BCAA and urea exhibit endogenous circadian rhythmicity in humans during the forced desynchrony protocol. The cosine models (black lines) and 95% confidence intervals (gray areas) are based on mixed model analyses and use precise circadian phase data. To show that these models adequately fit the actual data, we also plot the proportional changes across 60 circadian degree windows per individual multiplied by the group average with SEM error bars (open circles with error bars). Data are double plotted to aid visualization of rhythmicity. Lower X-axis, circadian phase in degrees, with fitted core body temperature minimum assigned 0-degrees, and 360 degrees equal to the individual circadian period (group average 24.09h); top X-axis, corresponding average clocktime for these individuals; vertical dotted lines, core body temperature minimum; horizontal gray bars, corresponding average habitual sleep episode in the two weeks prior to admission.
Similar articles
-
Knoedler JR, Ávila-Mendoza J, Subramani A, Denver RJ. Knoedler JR, et al. J Biol Rhythms. 2020 Jun;35(3):257-274. doi: 10.1177/0748730420913205. Epub 2020 Apr 3. J Biol Rhythms. 2020. PMID: 32241200 Free PMC article.
-
The Circadian Clock Regulates Adipogenesis by a Per3 Crosstalk Pathway to Klf15.
Aggarwal A, Costa MJ, Rivero-Gutiérrez B, Ji L, Morgan SL, Feldman BJ. Aggarwal A, et al. Cell Rep. 2017 Nov 28;21(9):2367-2375. doi: 10.1016/j.celrep.2017.11.004. Cell Rep. 2017. PMID: 29186676 Free PMC article.
-
Circadian rhythms govern cardiac repolarization and arrhythmogenesis.
Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, Sharma N, Ficker E, Cutler MJ, Gulick J, Sanbe A, Robbins J, Demolombe S, Kondratov RV, Shea SA, Albrecht U, Wehrens XH, Rosenbaum DS, Jain MK. Jeyaraj D, et al. Nature. 2012 Feb 22;483(7387):96-9. doi: 10.1038/nature10852. Nature. 2012. PMID: 22367544 Free PMC article.
-
Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology.
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Kim P, et al. Endocr Rev. 2019 Feb 1;40(1):66-95. doi: 10.1210/er.2018-00049. Endocr Rev. 2019. PMID: 30169559 Review.
-
Chronopharmacological strategies focused on chrono-drug discovery.
Ohdo S, Koyanagi S, Matsunaga N. Ohdo S, et al. Pharmacol Ther. 2019 Oct;202:72-90. doi: 10.1016/j.pharmthera.2019.05.018. Epub 2019 Jun 5. Pharmacol Ther. 2019. PMID: 31173839 Review.
Cited by
-
Metabolism and the circadian clock converge.
Eckel-Mahan K, Sassone-Corsi P. Eckel-Mahan K, et al. Physiol Rev. 2013 Jan;93(1):107-35. doi: 10.1152/physrev.00016.2012. Physiol Rev. 2013. PMID: 23303907 Free PMC article. Review.
-
Li H, An X, Bao L, Li Y, Pan Y, He J, Liu L, Zhu X, Zhang J, Cheng J, Chu W. Li H, et al. Front Genet. 2020 Aug 11;11:852. doi: 10.3389/fgene.2020.00852. eCollection 2020. Front Genet. 2020. PMID: 32849831 Free PMC article.
-
Advances in understanding the peripheral circadian clocks.
Richards J, Gumz ML. Richards J, et al. FASEB J. 2012 Sep;26(9):3602-13. doi: 10.1096/fj.12-203554. Epub 2012 Jun 1. FASEB J. 2012. PMID: 22661008 Free PMC article. Review.
-
Chen S, Minegishi Y, Hasumura T, Shimotoyodome A, Ota N. Chen S, et al. Sci Rep. 2020 Apr 8;10(1):6065. doi: 10.1038/s41598-020-63139-9. Sci Rep. 2020. PMID: 32269254 Free PMC article.
-
Scheer FAJL, Hilton MF, Evoniuk HL, Shiels SA, Malhotra A, Sugarbaker R, Ayers RT, Israel E, Massaro AF, Shea SA. Scheer FAJL, et al. Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):e2018486118. doi: 10.1073/pnas.2018486118. Proc Natl Acad Sci U S A. 2021. PMID: 34493686 Free PMC article.
References
-
- Brosnan ME, Brosnan JT. Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am J Clin Nutr. 2009;90:857S–861S. - PubMed
-
- D'Antona G, Ragni M, Cardile A, Tedesco L, Dossena M, Bruttini F, Caliaro F, Corsetti G, Bottinelli R, Carruba MO, et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell metabolism. 2010;12:362–372. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- K24 HL076446/HL/NHLBI NIH HHS/United States
- R01 HL072952/HL/NHLBI NIH HHS/United States
- DK059630/DK/NIDDK NIH HHS/United States
- R01 HL076754/HL/NHLBI NIH HHS/United States
- M01 RR002635/RR/NCRR NIH HHS/United States
- HL076754/HL/NHLBI NIH HHS/United States
- P30 HL101299/HL/NHLBI NIH HHS/United States
- HL097023/HL/NHLBI NIH HHS/United States
- HL084154/HL/NHLBI NIH HHS/United States
- R01 HL076754-07/HL/NHLBI NIH HHS/United States
- R01 HL094806/HL/NHLBI NIH HHS/United States
- P30-HL101299/HL/NHLBI NIH HHS/United States
- M01-RR02635/RR/NCRR NIH HHS/United States
- R00 HL097023/HL/NHLBI NIH HHS/United States
- HL097595/HL/NHLBI NIH HHS/United States
- T32 HL105338/HL/NHLBI NIH HHS/United States
- R01 HL086548/HL/NHLBI NIH HHS/United States
- K99 HL097023/HL/NHLBI NIH HHS/United States
- R01-HL09480601/HL/NHLBI NIH HHS/United States
- R01 HL097593/HL/NHLBI NIH HHS/United States
- K08 HL094660/HL/NHLBI NIH HHS/United States
- R01 HL075427/HL/NHLBI NIH HHS/United States
- HL075427/HL/NHLBI NIH HHS/United States
- R01 HL103205/HL/NHLBI NIH HHS/United States
- R01 HL110630/HL/NHLBI NIH HHS/United States
- HL094660/HL/NHLBI NIH HHS/United States
- HL086548/HL/NHLBI NIH HHS/United States
- R01 HL084154/HL/NHLBI NIH HHS/United States
- HL072952/HL/NHLBI NIH HHS/United States
- DK59637/DK/NIDDK NIH HHS/United States
- K24-HL76446/HL/NHLBI NIH HHS/United States
- R01 HL084154-04/HL/NHLBI NIH HHS/United States
- U24 DK059630/DK/NIDDK NIH HHS/United States
- R01 HL110630-02/HL/NHLBI NIH HHS/United States
- U24 DK059637/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Molecular Biology Databases