An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis - PubMed
doi: 10.1371/journal.pone.0033439. Epub 2012 Mar 29.
Silke Schmidt, Anne-Kristin Kaster, Meike Goenrich, John Vollmers, Andrea Thürmer, Johannes Bertsch, Kai Schuchmann, Birgit Voigt, Michael Hecker, Rolf Daniel, Rudolf K Thauer, Gerhard Gottschalk, Volker Müller
Affiliations
- PMID: 22479398
- PMCID: PMC3315566
- DOI: 10.1371/journal.pone.0033439
An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis
Anja Poehlein et al. PLoS One. 2012.
Abstract
Synthesis of acetate from carbon dioxide and molecular hydrogen is considered to be the first carbon assimilation pathway on earth. It combines carbon dioxide fixation into acetyl-CoA with the production of ATP via an energized cell membrane. How the pathway is coupled with the net synthesis of ATP has been an enigma. The anaerobic, acetogenic bacterium Acetobacterium woodii uses an ancient version of this pathway without cytochromes and quinones. It generates a sodium ion potential across the cell membrane by the sodium-motive ferredoxin:NAD oxidoreductase (Rnf). The genome sequence of A. woodii solves the enigma: it uncovers Rnf as the only ion-motive enzyme coupled to the pathway and unravels a metabolism designed to produce reduced ferredoxin and overcome energetic barriers by virtue of electron-bifurcating, soluble enzymes.
Conflict of interest statement
Competing Interests: The authors have declared that no competing interests exist.
Figures

Cluster I: two genes for formate dehydrogenase (fdhF) are organized together with three copies of a FeS-containing subunit of a [FeFe]-hydrogenase (hycB), a formate dehydrogenase accessory protein (fdhD) and another subunit of the [FeFe]-hydrogenase (hydA2). Cluster II: genes for formyl-THF synthetase (fhs1), methenyl-THF cyclohydrolase (fchA), methylene-THF dehydrogenase (folD) and methylene-THF reductase (metF, metV) are organized together with a RnfC-similar protein (rnfC2). Cluster III: genes for the subunits of the CO dehydrogenase/acetyl CoA synthase complex consisting of CO dehydrogenase (acsA), acetyl-CoA synthase (acsB1), corrinoid-iron sulfur protein (acsCD) and methyltransferase (acsE) are organized together with two copies of a CODH nickel-insertion accessory protein (cooC), a corrinoid activation/regeneration protein (acsV) and two hypothetical proteins (Orf1 and Orf2).

Awo_c27000 (HydE) is not a component of the active enzyme but may be involved in assembly or signalling.

fdhF1 and fdhF2 code for sulfur and selenium containing isoenzymes, respectively. HycB1 and HycB2 may be specific for FdhF1 and FdhF2, respectively. The electron transfer subunits HycB1, HycB2 and HycB3 each have four conserved tertacysteine motifs.

Panel A depicts an indirect coupling via NADH+H+ and the small subunit of the methylene-THF reductase (MetV) as electron input module, panel B a direct coupling of the methylene-THF reductase to the Rnf complex via RnfC2.

The amount of ions translocated by the Rnf complex and the Na+ F1FO ATP synthase are not exactly known. For sake of clarity, a Na+/e− stochiometry of 1∶1 is assumed (based on a ΔGO′ value of −37 kJ/mol; E0′ Fd2−/Fdox = −500 mV; E0′ NADH+H+/NAD+ = −320 mV; and ΔuNa+ (electrochemical Na+ potential across the cytoplasmic membrane) = −320 mV). For the ATP synthase, a Na+/ATP stoichiometry of 4 is assumed. The redox potentials (E0′) are: CO2/formate = −430 mV, methenyl-THF/methylene-THF = −300 mV, methylene-THF/methyl-THF = −200 mV, CO2/CO = −520 mV.

Time course of hydrogen oxidation by cell supensions of A. woodii with CO2 as terminal electron acceptor. Assays received 1.5 (▴) or 1 ml (•) hydrogen. One assay did not contain cells (▪). At the indicated time point, hydrogen was added again to proof the viability of the cells.
Similar articles
-
A bacterial electron-bifurcating hydrogenase.
Schuchmann K, Müller V. Schuchmann K, et al. J Biol Chem. 2012 Sep 7;287(37):31165-71. doi: 10.1074/jbc.M112.395038. Epub 2012 Jul 18. J Biol Chem. 2012. PMID: 22810230 Free PMC article.
-
Westphal L, Wiechmann A, Baker J, Minton NP, Müller V. Westphal L, et al. J Bacteriol. 2018 Oct 10;200(21):e00357-18. doi: 10.1128/JB.00357-18. Print 2018 Nov 1. J Bacteriol. 2018. PMID: 30126940 Free PMC article.
-
Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V. Imkamp F, et al. J Bacteriol. 2007 Nov;189(22):8145-53. doi: 10.1128/JB.01017-07. Epub 2007 Sep 14. J Bacteriol. 2007. PMID: 17873051 Free PMC article.
-
The ins and outs of Na(+) bioenergetics in Acetobacterium woodii.
Schmidt S, Biegel E, Müller V. Schmidt S, et al. Biochim Biophys Acta. 2009 Jun;1787(6):691-6. doi: 10.1016/j.bbabio.2008.12.015. Epub 2009 Jan 8. Biochim Biophys Acta. 2009. PMID: 19167341 Review.
-
Buckel W, Thauer RK. Buckel W, et al. Biochim Biophys Acta. 2013 Feb;1827(2):94-113. doi: 10.1016/j.bbabio.2012.07.002. Epub 2012 Jul 16. Biochim Biophys Acta. 2013. PMID: 22800682 Review.
Cited by
-
Wang S, Huang H, Kahnt J, Mueller AP, Köpke M, Thauer RK. Wang S, et al. J Bacteriol. 2013 Oct;195(19):4373-86. doi: 10.1128/JB.00678-13. Epub 2013 Jul 26. J Bacteriol. 2013. PMID: 23893107 Free PMC article.
-
Hess V, Schuchmann K, Müller V. Hess V, et al. J Biol Chem. 2013 Nov 1;288(44):31496-502. doi: 10.1074/jbc.M113.510255. Epub 2013 Sep 17. J Biol Chem. 2013. PMID: 24045950 Free PMC article.
-
Taxis toward hydrogen gas by Methanococcus maripaludis.
Brileya KA, Connolly JM, Downey C, Gerlach R, Fields MW. Brileya KA, et al. Sci Rep. 2013 Nov 5;3:3140. doi: 10.1038/srep03140. Sci Rep. 2013. PMID: 24189441 Free PMC article.
-
It does not always take two to tango: "Syntrophy" via hydrogen cycling in one bacterial cell.
Wiechmann A, Ciurus S, Oswald F, Seiler VN, Müller V. Wiechmann A, et al. ISME J. 2020 Jun;14(6):1561-1570. doi: 10.1038/s41396-020-0627-1. Epub 2020 Mar 16. ISME J. 2020. PMID: 32203116 Free PMC article.
-
Formate Utilization by the Crenarchaeon Desulfurococcus amylolyticus.
Ergal I, Reischl B, Hasibar B, Manoharan L, Zipperle A, Bochmann G, Fuchs W, Rittmann SKR. Ergal I, et al. Microorganisms. 2020 Mar 23;8(3):454. doi: 10.3390/microorganisms8030454. Microorganisms. 2020. PMID: 32210133 Free PMC article.
References
-
- Martin W. Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Lett. 2011 in press. - PubMed
-
- Fuchs G. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev. 1986;39:181–213.
-
- Wood HG, Ragsdale SW, Pezacka E. The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev. 1986;39:345–362.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous