pubmed.ncbi.nlm.nih.gov

Lipids and prostate cancer - PubMed

Review

Lipids and prostate cancer

Janel Suburu et al. Prostaglandins Other Lipid Mediat. 2012 May.

Abstract

The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression.

Copyright © 2012 Elsevier Inc. All rights reserved.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Cancer Cell Metabolism Promotes Fatty Acid Synthesis

Glucose entering the cell is immediately phosphorylated by Hexokinase 2 (HK2), producing glucose-6-phosphate (G6P). G6P can enter both glycolysis and the pentose phosphate pathway (PPP). Expression of pyruvate kinase M2 (PKM2) promotes the ATP-free conversion of phosphoenolpyruvate (PEP) to pyruvate by a currently unknown enzyme, which may prevent ATP-mediated inhibition of glycolysis. Citrate is exported from the mitochondrial TCA cycle to fuel the fatty acid synthesis pathway by conversion to acetyl-CoA by ATP citrate lyase (ACLY). Acetyl-CoA carboxylase 1 (ACACA) initiates the first committed step to fatty acid synthesis to produce malonyl-CoA. Seven malonyl-CoA molecules are added to acetyl-CoA by fatty acid synthase (FASN) to produce palmitic acid (16:0). Palmitic acid can be further elongated to stearic acid (18:0) and desaturated by stearoyl-CoA desaturase (SCD) to produce oleic acid (18:1). Citrate may also be recycled to produce NADPH for fatty acid synthesis by malic enzyme (ME1), which produces pyruvate, or by cytosolic aconitase (ACO1) followed by cytosolic isocitrate dehydrogenase (IDH1) to produce α-ketoglutarate. Glutamine can be converted to α-ketoglutarate upon entering the cell, to replenish TCA cycle intermediates or fuel fatty acid synthesis. The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), a critical reductant for fatty acid synthase (FASN), is produced from the activity of the PPP, ME1, and IDH.

Similar articles

Cited by

References

    1. Baade PD, Youlden DR, Krnjacki LJ. International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res. 2009;53(2):171–84. - PubMed
    1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36. - PubMed
    1. Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body. J Gen Physiol. 1927;8(6):519–30. - PMC - PubMed
    1. Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A. 1994;91(14):6379–83. - PMC - PubMed
    1. Jayakumar A, Tai MH, Huang WY, al-Feel W, Hsu M, Abu-Elheiga L, et al. Human fatty acid synthase: properties and molecular cloning. Proc Natl Acad Sci U S A. 1995;92(19):8695–9. - PMC - PubMed

Publication types

MeSH terms

Substances