Toll-like receptors of deuterostome invertebrates - PubMed
- ️Sun Jan 01 2012
Toll-like receptors of deuterostome invertebrates
Honoo Satake et al. Front Immunol. 2012.
Abstract
Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess "hybrid" functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs.
Keywords: Toll-like receptor; deuterostome invertebrate; diversity; evolution; innate immunity.
Figures

Structural organization of Ciona TLRs (Ci-TLR) and human TLRs (hTLR).

Possible evolutionary scenarios of deuterostome invertebrate TLRs. (A) only a few TLRs or their related genes might have existed in a common deuterostome ancestor or (B) a common deuterostome ancestor might have numerous TLR family genes.
Similar articles
-
Comparative overview of toll-like receptors in lower animals.
Satake H, Sasaki N. Satake H, et al. Zoolog Sci. 2010 Feb;27(2):154-61. doi: 10.2108/zsj.27.154. Zoolog Sci. 2010. PMID: 20141420 Review.
-
Sasaki N, Ogasawara M, Sekiguchi T, Kusumoto S, Satake H. Sasaki N, et al. J Biol Chem. 2009 Oct 2;284(40):27336-43. doi: 10.1074/jbc.M109.032433. Epub 2009 Aug 3. J Biol Chem. 2009. PMID: 19651780 Free PMC article.
-
Ji J, Ramos-Vicente D, Navas-Pérez E, Herrera-Úbeda C, Lizcano JM, Garcia-Fernàndez J, Escrivà H, Bayés À, Roher N. Ji J, et al. Front Immunol. 2018 Nov 2;9:2525. doi: 10.3389/fimmu.2018.02525. eCollection 2018. Front Immunol. 2018. PMID: 30450099 Free PMC article.
-
The evolution of the metazoan Toll receptor family and its expression during protostome development.
Orús-Alcalde A, Lu TM, Børve A, Hejnol A. Orús-Alcalde A, et al. BMC Ecol Evol. 2021 Nov 22;21(1):208. doi: 10.1186/s12862-021-01927-1. BMC Ecol Evol. 2021. PMID: 34809567 Free PMC article.
-
Satake H, Matsubara S, Shiraishi A, Yamamoto T, Osugi T, Sakai T, Kawada T. Satake H, et al. Cell Tissue Res. 2019 Sep;377(3):293-308. doi: 10.1007/s00441-019-03024-8. Epub 2019 May 11. Cell Tissue Res. 2019. PMID: 31079207 Review.
Cited by
-
Innate immune system and tissue regeneration in planarians: an area ripe for exploration.
Peiris TH, Hoyer KK, Oviedo NJ. Peiris TH, et al. Semin Immunol. 2014 Aug;26(4):295-302. doi: 10.1016/j.smim.2014.06.005. Epub 2014 Jul 28. Semin Immunol. 2014. PMID: 25082737 Free PMC article. Review.
-
Ren Y, Chen J, Wang Y, Fu S, Bu W, Xue H. Ren Y, et al. Front Physiol. 2023 Aug 17;14:1244190. doi: 10.3389/fphys.2023.1244190. eCollection 2023. Front Physiol. 2023. PMID: 37664435 Free PMC article.
-
Huang Y, Han K, Ren Q. Huang Y, et al. Front Physiol. 2018 Mar 5;9:133. doi: 10.3389/fphys.2018.00133. eCollection 2018. Front Physiol. 2018. PMID: 29556200 Free PMC article.
-
Cao J, Chen Y, Jin M, Ren Q. Cao J, et al. R Soc Open Sci. 2016 Jun 15;3(6):160123. doi: 10.1098/rsos.160123. eCollection 2016 Jun. R Soc Open Sci. 2016. PMID: 27429771 Free PMC article.
-
The Role of the Microbiota in Regeneration-Associated Processes.
Díaz-Díaz LM, Rodríguez-Villafañe A, García-Arrarás JE. Díaz-Díaz LM, et al. Front Cell Dev Biol. 2022 Jan 26;9:768783. doi: 10.3389/fcell.2021.768783. eCollection 2021. Front Cell Dev Biol. 2022. PMID: 35155442 Free PMC article. Review.
References
-
- Akashi S., Shimazu R., Ogata H., Nagai Y., Takeda K., Kimoto M., Miyake K. (2000). Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J. Immunol. 164, 3471–3475 - PubMed
-
- Azumi K., De Santis R., De Tomaso A., Rigoutsos I., Yoshizaki F., Pinto M. R., Marino R., Shida K., Ikeda M., Ikeda M., Arai M., Inoue Y., Shimizu T., Satoh N., Rokhsar D. S., Du Pasquier L., Kasahara M., Satake M., Nonaka M. (2003). Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: “waiting for Godot.” Immunogenetics 55, 570–58110.1007/s00251-003-0606-5 - DOI - PubMed
-
- Bosch T. C. G., Augustin R., Anton-Erxleben F., Fraune S., Hemmrich G., Zill H., Rosenstiel P., Jacobs G., Schreiber S., Leippe M., Stanisak M., Grötzinger J., Jung S., Podschun R., Bartels J., Harder J., Schröder J. M. (2009). Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defense. Dev. Comp. Immunol. 33, 559–56910.1016/j.dci.2008.10.004 - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous