pubmed.ncbi.nlm.nih.gov

Presence of multiple independent effects in risk loci of common complex human diseases - PubMed

  • ️Sun Jan 01 2012

Presence of multiple independent effects in risk loci of common complex human diseases

Xiayi Ke. Am J Hum Genet. 2012.

Abstract

Many genetic loci and SNPs associated with many common complex human diseases and traits are now identified. The total genetic variance explained by these loci for a trait or disease, however, has often been very small. Much of the "missing heritability" has been revealed to be hidden in the genome among the large number of variants with small effects. Several recent studies have reported the presence of multiple independent SNPs and genetic heterogeneity in trait-associated loci. It is therefore reasonable to speculate that such a phenomenon could be common among loci known to be associated with a complex trait or disease. For testing this hypothesis, a total of 117 loci known to be associated with rheumatoid arthritis (RA), Crohn disease (CD), type 1 diabetes (T1D), or type 2 diabetes (T2D) were selected. The presence of multiple independent effects was assessed in the case-control samples genotyped by the Wellcome Trust Case Control Consortium study and imputed with SNP genotype information from the HapMap Project and the 1000 Genomes Project. Eleven loci with evidence of multiple independent effects were identified in the study, and the number was expected to increase at larger sample sizes and improved statistical power. The variance explained by the multiple effects in a locus was much higher than the variance explained by the single reported SNP effect. The results thus significantly improve our understanding of the allelic structure of these individual disease-associated loci, as well as our knowledge of the general genetic mechanisms of common complex traits and diseases.

Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Manolio T.A., Collins F.S., Cox N.J., Goldstein D.B., Hindorff L.A., Hunter D.J., McCarthy M.I., Ramos E.M., Cardon L.R., Chakravarti A. Finding the missing heritability of complex diseases. Nature. 2009;461:747–753. - PMC - PubMed
    1. Wang K., Li M., Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am. J. Hum. Genet. 2007;81:1278–1283. - PMC - PubMed
    1. Yang J., Benyamin B., McEvoy B.P., Gordon S., Henders A.K., Nyholt D.R., Madden P.A., Heath A.C., Martin N.G., Montgomery G.W. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010;42:565–569. - PMC - PubMed
    1. Yang J., Manolio T.A., Pasquale L.R., Boerwinkle E., Caporaso N., Cunningham J.M., de Andrade M., Feenstra B., Feingold E., Hayes M.G. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 2011;43:519–525. - PMC - PubMed
    1. Lango Allen H., Estrada K., Lettre G., Berndt S.I., Weedon M.N., Rivadeneira F., Willer C.J., Jackson A.U., Vedantam S., Raychaudhuri S. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–838. - PMC - PubMed

Publication types

MeSH terms