Structure-function relationships in calpains - PubMed
- ️Sun Jan 01 2012
Review
. 2012 Nov 1;447(3):335-51.
doi: 10.1042/BJ20120921.
Affiliations
- PMID: 23035980
- DOI: 10.1042/BJ20120921
Review
Structure-function relationships in calpains
Robert L Campbell et al. Biochem J. 2012.
Abstract
Calpains are a family of complex multi-domain intracellular enzymes that share a calcium-dependent cysteine protease core. These are not degradative enzymes, but instead carry out limited cleavage of target proteins in response to calcium signalling. Selective cutting of cytoskeletal proteins to facilitate cell migration is one such function. The two most abundant and extensively studied members of this family in mammals, calpains 1 and 2, are heterodimers of an isoform-specific 80 kDa large subunit and a common 28 kDa small subunit. Structures of calpain-2, both Ca2+-free and bound to calpastatin in the activated Ca2+-bound state, have provided a wealth of information about the enzyme's structure-function relationships and activation. The main association between the subunits is the pairing of their C-terminal penta-EF-hand domains through extensive intimate hydrophobic contacts. A lesser contact is made between the N-terminal anchor helix of the large subunit and the penta-EF-hand domain of the small subunit. Up to ten Ca2+ ions are co-operatively bound during activation. The anchor helix is released and individual domains change their positions relative to each other to properly align the active site. Because calpains 1 and 2 require ~30 and ~350 μM Ca2+ ions for half-maximal activation respectively, it has long been argued that autoproteolysis, subunit dissociation, post-translational modifications or auxiliary proteins are needed to activate the enzymes in the cell, where Ca2+ levels are in the nanomolar range. In the absence of robust support for these mechanisms, it is possible that under normal conditions calpains are transiently activated by high Ca2+ concentrations in the microenvironment of a Ca2+ influx, and then return to an inactive state ready for reactivation.
Similar articles
-
Distinguishing between calpain heterodimerization and homodimerization.
Ravulapalli R, Campbell RL, Gauthier SY, Dhe-Paganon S, Davies PL. Ravulapalli R, et al. FEBS J. 2009 Feb;276(4):973-82. doi: 10.1111/j.1742-4658.2008.06833.x. FEBS J. 2009. PMID: 19215300
-
Partha SK, Ravulapalli R, Allingham JS, Campbell RL, Davies PL. Partha SK, et al. FEBS J. 2014 Jul;281(14):3138-49. doi: 10.1111/febs.12849. Epub 2014 Jun 9. FEBS J. 2014. PMID: 24846670
-
Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin.
Hanna RA, Campbell RL, Davies PL. Hanna RA, et al. Nature. 2008 Nov 20;456(7220):409-12. doi: 10.1038/nature07451. Nature. 2008. PMID: 19020623
-
Goll DE, Thompson VF, Li H, Wei W, Cong J. Goll DE, et al. Physiol Rev. 2003 Jul;83(3):731-801. doi: 10.1152/physrev.00029.2002. Physiol Rev. 2003. PMID: 12843408 Review.
-
Murachi T. Murachi T. Rinsho Byori. 1990 Apr;38(4):337-46. Rinsho Byori. 1990. PMID: 2195187 Review. Japanese.
Cited by
-
Whole-Exome Sequencing of Patients With Posterior Segment Uveitis.
Li AS, Velez G, Darbro B, Toral MA, Yang J, Tsang SH, Ferguson PJ, Folk JC, Bassuk AG, Mahajan VB. Li AS, et al. Am J Ophthalmol. 2021 Jan;221:246-259. doi: 10.1016/j.ajo.2020.07.021. Epub 2020 Jul 21. Am J Ophthalmol. 2021. PMID: 32707200 Free PMC article.
-
Thome T, Kim K, Dong G, Ryan TE. Thome T, et al. Antioxid Redox Signal. 2023 Feb;38(4-6):318-337. doi: 10.1089/ars.2022.0143. Antioxid Redox Signal. 2023. PMID: 36245209 Free PMC article. Review.
-
Post-Harvest Strategies to Improve Tenderness of Underutilized Mature Beef: A Review.
Tuell JR, Nondorf MJ, Brad Kim YH. Tuell JR, et al. Food Sci Anim Resour. 2022 Sep;42(5):723-743. doi: 10.5851/kosfa.2022.e33. Epub 2022 Sep 1. Food Sci Anim Resour. 2022. PMID: 36133641 Free PMC article. Review.
-
Calpain-6 deficiency promotes skeletal muscle development and regeneration.
Tonami K, Hata S, Ojima K, Ono Y, Kurihara Y, Amano T, Sato T, Kawamura Y, Kurihara H, Sorimachi H. Tonami K, et al. PLoS Genet. 2013;9(8):e1003668. doi: 10.1371/journal.pgen.1003668. Epub 2013 Aug 1. PLoS Genet. 2013. PMID: 23935533 Free PMC article.
-
Rapid diaphragm atrophy following cervical spinal cord hemisection.
Gill LC, Ross HH, Lee KZ, Gonzalez-Rothi EJ, Dougherty BJ, Judge AR, Fuller DD. Gill LC, et al. Respir Physiol Neurobiol. 2014 Feb 1;192:66-73. doi: 10.1016/j.resp.2013.12.006. Epub 2013 Dec 14. Respir Physiol Neurobiol. 2014. PMID: 24341999 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous