Building a centriole - PubMed
Review
Building a centriole
Tomer Avidor-Reiss et al. Curr Opin Cell Biol. 2013 Feb.
Abstract
Centrioles are the key foundation of centrosomes and cilia, yet a molecular understanding of how they form has only recently begun to emerge. Building a fully functional centriole that can form a centrosome and cilium requires two cell cycles. Centriole building starts with procentriole nucleation, a process that is coordinated by the conserved proteins Plk4/Zyg-1, and Asterless/Cep152. Subsequently, Sas-6, a conserved procentriole protein, self-assembles to provide nine-fold symmetry to the centriole scaffold. The procentriole then continues to elongate into a centriole, a process controlled by Sas-4/CPAP and CP110. Then, centrioles recruit Sas-4-mediated pre-assembled centrosomal complexes from the cytoplasm to form the pericentriolar material (PCM). Finally, CP110 and its interacting proteins are involved in controlling the timing of centriole templating of the cilium.
Copyright © 2012 Elsevier Ltd. All rights reserved.
Figures

Depiction of the structural and molecular events taking place during the formation of one of the centrioles in a cell (depicted in blue) through two consecutive cell cycles. During the first cell cycle (light gray background, A–E), the basic structure of the centriole is formed. During second cell cycle (darker gray background, F–I), the immature centriole acquires functions in a step-by-step manner until it become fully mature and functional (H). A second centriole formed near the original centriole is depicted in light brown. Major events in the formation of the centriole are noted in blue. Key proteins are indicated in orange. Centrioles are depicted as they would appear from a cross section (B) and a side view (C–I).
Similar articles
-
Asterless is a scaffold for the onset of centriole assembly.
Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, Rodrigues-Martins A, Bettencourt-Dias M, Callaini G, Glover DM. Dzhindzhev NS, et al. Nature. 2010 Oct 7;467(7316):714-8. doi: 10.1038/nature09445. Epub 2010 Sep 19. Nature. 2010. PMID: 20852615
-
Zheng X, Gooi LM, Wason A, Gabriel E, Mehrjardi NZ, Yang Q, Zhang X, Debec A, Basiri ML, Avidor-Reiss T, Pozniakovsky A, Poser I, Saric T, Hyman AA, Li H, Gopalakrishnan J. Zheng X, et al. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):E354-63. doi: 10.1073/pnas.1317535111. Epub 2014 Jan 2. Proc Natl Acad Sci U S A. 2014. PMID: 24385583 Free PMC article.
-
Dynamics of centriole amplification in centrosome-depleted brain multiciliated progenitors.
Mercey O, Al Jord A, Rostaing P, Mahuzier A, Fortoul A, Boudjema AR, Faucourt M, Spassky N, Meunier A. Mercey O, et al. Sci Rep. 2019 Sep 10;9(1):13060. doi: 10.1038/s41598-019-49416-2. Sci Rep. 2019. PMID: 31506528 Free PMC article.
-
Mechanism and Regulation of Centriole and Cilium Biogenesis.
Breslow DK, Holland AJ. Breslow DK, et al. Annu Rev Biochem. 2019 Jun 20;88:691-724. doi: 10.1146/annurev-biochem-013118-111153. Epub 2019 Jan 11. Annu Rev Biochem. 2019. PMID: 30601682 Free PMC article. Review.
-
The arithmetic of centrosome biogenesis.
Delattre M, Gönczy P. Delattre M, et al. J Cell Sci. 2004 Apr 1;117(Pt 9):1619-30. doi: 10.1242/jcs.01128. J Cell Sci. 2004. PMID: 15075224 Review.
Cited by
-
Luo J, Li P. Luo J, et al. Cell Biosci. 2021 May 28;11(1):99. doi: 10.1186/s13578-021-00617-1. Cell Biosci. 2021. PMID: 34049587 Free PMC article. Review.
-
Insights into photoreceptor ciliogenesis revealed by animal models.
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Baehr W, et al. Prog Retin Eye Res. 2019 Jul;71:26-56. doi: 10.1016/j.preteyeres.2018.12.004. Epub 2018 Dec 25. Prog Retin Eye Res. 2019. PMID: 30590118 Free PMC article. Review.
-
Langner E, Puapatanakul P, Pudlowski R, Alsabbagh DY, Miner JH, Horani A, Dutcher SK, Brody SL, Wang JT, Suleiman HY, Mahjoub MR. Langner E, et al. Cytoskeleton (Hoboken). 2024 Nov;81(11):618-638. doi: 10.1002/cm.21870. Epub 2024 May 7. Cytoskeleton (Hoboken). 2024. PMID: 38715433
-
Turner KA, Fishman EL, Asadullah M, Ott B, Dusza P, Shah TA, Sindhwani P, Nadiminty N, Molinari E, Patrizio P, Saltzman BS, Avidor-Reiss T. Turner KA, et al. Front Cell Dev Biol. 2021 Apr 22;9:658891. doi: 10.3389/fcell.2021.658891. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 33968935 Free PMC article.
-
Jaiswal A, Baliu-Souza T, Turner K, Nadiminty N, Rambhatla A, Agarwal A, Krawetz SA, Dupree JM, Saltzman B, Schon SB, Avidor-Reiss T. Jaiswal A, et al. Eur J Cell Biol. 2022 Jun-Aug;101(3):151243. doi: 10.1016/j.ejcb.2022.151243. Epub 2022 May 27. Eur J Cell Biol. 2022. PMID: 35640396 Free PMC article.
References
-
- Januschke J, Llamazares S, Reina J, Gonzalez C. Drosophila neuroblasts retain the daughter centrosome. Nat Commun. 2011;2(243) - PMC - PubMed
-
* Studying Drosophila neuroblasts using photo converted centrioles and a daughter-centriole-specific markers,the authors show that upon asymmetric mitosis, the old centrosome is inherited by the differentiating daughter cell while the stem cells inherit the new centriole. This demonstrates that old and new centrioles are functionally distinct, but this distinction is used differently from one cell type to the other
-
- Dammermann A, Muller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell. 2004;7(6):815–829. - PubMed
-
- Pelletier L, O'Toole E, Schwager A, Hyman AA, Muller-Reichert T. Centriole assembly in caenorhabditis elegans. Nature. 2006;444(7119):619–623. - PubMed
-
- Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA. Plk4-induced centriole biogenesis in human cells. Dev Cell. 2007;13(2):190–202. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources