Differential temperature dependence of tobacco etch virus and rhinovirus 3C proteases - PubMed
- ️Tue Jan 01 2013
Differential temperature dependence of tobacco etch virus and rhinovirus 3C proteases
Sreejith Raran-Kurussi et al. Anal Biochem. 2013.
Abstract
Because of their stringent sequence specificity, the 3C-like proteases from tobacco etch virus (TEV) and human rhinovirus are often used for the removal of affinity tags. The latter enzyme is rumored to have greater catalytic activity at 4 °C, the temperature at which fusion protein substrates are usually digested. Here we report that experiments with fusion protein and peptide substrates confirm this conjecture. Whereas the catalytic efficiency of rhinovirus 3C protease is approximately the same at its optimum temperature (30 °C) and at 4 °C, TEV protease is 10-fold less active at the latter temperature due primarily to a reduction in k(cat).
Published by Elsevier Inc.
Figures
![Figure 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b8b/4196241/cb7e12c42c7c/nihms444511f1.gif)
Temperature Dependence of Initial Reaction Velocity. MBP-NusG fusion protein substrates were digested by TEV [A] or R3C [B] proteases at the indicated temperatures. In the respective insets (right), representative SDS-PAGE gels are shown for uncleaved (Lane 1) and cleaved (Lanes 2-10; 2, 5, 10, 20, 30, 40, 50, 60, and 120 min, respectively) substrates at 4°C.
Similar articles
-
Ullah R, Shah MA, Tufail S, Ismat F, Imran M, Iqbal M, Mirza O, Rhaman M. Ullah R, et al. PLoS One. 2016 Apr 19;11(4):e0153436. doi: 10.1371/journal.pone.0153436. eCollection 2016. PLoS One. 2016. PMID: 27093053 Free PMC article.
-
Activation of human rhinovirus-14 3C protease.
Wang QM, Johnson RB. Wang QM, et al. Virology. 2001 Feb 1;280(1):80-6. doi: 10.1006/viro.2000.0760. Virology. 2001. PMID: 11162821
-
A simplified method to remove fusion tags from a xylanase of Bacillus sp. HBP8 with HRV 3C protease.
Xu H, Wang Q, Zhang Z, Yi L, Ma L, Zhai C. Xu H, et al. Enzyme Microb Technol. 2019 Apr;123:15-20. doi: 10.1016/j.enzmictec.2019.01.004. Epub 2019 Jan 4. Enzyme Microb Technol. 2019. PMID: 30686346
-
Human rhinovirus 3C protease as a potential target for the development of antiviral agents.
Wanga QM, Chen SH. Wanga QM, et al. Curr Protein Pept Sci. 2007 Feb;8(1):19-27. doi: 10.2174/138920307779941523. Curr Protein Pept Sci. 2007. PMID: 17305557 Review.
-
Proteases of human rhinovirus: role in infection.
Jensen LM, Walker EJ, Jans DA, Ghildyal R. Jensen LM, et al. Methods Mol Biol. 2015;1221:129-41. doi: 10.1007/978-1-4939-1571-2_10. Methods Mol Biol. 2015. PMID: 25261311 Review.
Cited by
-
Ma C, Hao Z, Huysmans G, Lesiuk A, Bullough P, Wang Y, Bartlam M, Phillips SE, Young JD, Goldman A, Baldwin SA, Postis VL. Ma C, et al. PLoS One. 2015 Nov 25;10(11):e0143010. doi: 10.1371/journal.pone.0143010. eCollection 2015. PLoS One. 2015. PMID: 26606682 Free PMC article.
-
InteBac: An integrated bacterial and baculovirus expression vector suite.
Altmannova V, Blaha A, Astrinidis S, Reichle H, Weir JR. Altmannova V, et al. Protein Sci. 2021 Jan;30(1):108-114. doi: 10.1002/pro.3957. Epub 2020 Oct 13. Protein Sci. 2021. PMID: 32955754 Free PMC article.
-
Xu J, Nakanishi T, Kato T, Park EY. Xu J, et al. Biosci Rep. 2022 Jun 30;42(6):BSR20220739. doi: 10.1042/BSR20220739. Biosci Rep. 2022. PMID: 35642592 Free PMC article.
-
Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.
Alcaine SD, Tilton L, Serrano MA, Wang M, Vachet RW, Nugen SR. Alcaine SD, et al. Appl Microbiol Biotechnol. 2015 Oct;99(19):8177-85. doi: 10.1007/s00253-015-6867-8. Epub 2015 Aug 7. Appl Microbiol Biotechnol. 2015. PMID: 26245682 Free PMC article.
-
A dual protease approach for expression and affinity purification of recombinant proteins.
Raran-Kurussi S, Waugh DS. Raran-Kurussi S, et al. Anal Biochem. 2016 Jul 1;504:30-7. doi: 10.1016/j.ab.2016.04.006. Epub 2016 Apr 19. Anal Biochem. 2016. PMID: 27105777 Free PMC article.
References
-
- Waugh DS. Making the most of affinity tags. Trends Biotechnol. 2005;23:316–320. - PubMed
-
- Dougherty WG, Cary SM, Parks TD. Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology. 1989;171:356–364. - PubMed
-
- Kapust RB, Tozser J, Copeland TD, Waugh DS. The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun. 2002;294:949–955. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous