Ultrafast approximation for phylogenetic bootstrap - PubMed
Ultrafast approximation for phylogenetic bootstrap
Bui Quang Minh et al. Mol Biol Evol. 2013 May.
Abstract
Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.
Figures

Accuracies of SBS, RBS with RAxML, SH-aLRT with PhyML, and UFBoot approximation from the Yule–Harding (left panel) and the PANDIT-based simulations (right panel).

Impact of moderate (JC + ) and severe model violations (JC) on the accuracies of SBS, SH-aLRT, and UFBoot in the PANDIT-based simulations.

Distributions of run-time ratios (log2-scale) between RBS and UFBoot for 300 DNA and AA PANDIT alignments. The percentages of alignments where UFBoot runs slower (left from the dashed line) or faster (right from the dashed line) than RBS are shown.

Schematic view of the tree space sampled by the IQPNNI algorithm. The solid curve reflects the log-likelihood surface on the tree space. The structure of tree space is defined by the NNI operations where each -taxon tree has exactly
neighboring trees.
Similar articles
-
UFBoot2: Improving the Ultrafast Bootstrap Approximation.
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. Hoang DT, et al. Mol Biol Evol. 2018 Feb 1;35(2):518-522. doi: 10.1093/molbev/msx281. Mol Biol Evol. 2018. PMID: 29077904 Free PMC article.
-
MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation.
Hoang DT, Vinh LS, Flouri T, Stamatakis A, von Haeseler A, Minh BQ. Hoang DT, et al. BMC Evol Biol. 2018 Feb 2;18(1):11. doi: 10.1186/s12862-018-1131-3. BMC Evol Biol. 2018. PMID: 29390973 Free PMC article.
-
Anisimova M, Gil M, Dufayard JF, Dessimoz C, Gascuel O. Anisimova M, et al. Syst Biol. 2011 Oct;60(5):685-99. doi: 10.1093/sysbio/syr041. Epub 2011 May 3. Syst Biol. 2011. PMID: 21540409 Free PMC article.
-
Predicting Phylogenetic Bootstrap Values via Machine Learning.
Wiegert J, Höhler D, Haag J, Stamatakis A. Wiegert J, et al. Mol Biol Evol. 2024 Oct 4;41(10):msae215. doi: 10.1093/molbev/msae215. Mol Biol Evol. 2024. PMID: 39418337 Free PMC article.
-
A rapid bootstrap algorithm for the RAxML Web servers.
Stamatakis A, Hoover P, Rougemont J. Stamatakis A, et al. Syst Biol. 2008 Oct;57(5):758-71. doi: 10.1080/10635150802429642. Syst Biol. 2008. PMID: 18853362
Cited by
-
Palacio-Mejía JD, Grabowski PP, Ortiz EM, Silva-Arias GA, Haque T, Des Marais DL, Bonnette J, Lowry DB, Juenger TE. Palacio-Mejía JD, et al. AoB Plants. 2021 Jan 6;13(2):plab002. doi: 10.1093/aobpla/plab002. eCollection 2021 Apr. AoB Plants. 2021. PMID: 33708370 Free PMC article.
-
The Evolution of Silicon Transport in Eukaryotes.
Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, de Vargas C, Richter DJ. Marron AO, et al. Mol Biol Evol. 2016 Dec;33(12):3226-3248. doi: 10.1093/molbev/msw209. Epub 2016 Oct 11. Mol Biol Evol. 2016. PMID: 27729397 Free PMC article.
-
Friel AD, Neiswenter SA, Seymour CO, Bali LR, McNamara G, Leija F, Jewell J, Hedlund BP. Friel AD, et al. Front Microbiol. 2020 Jul 14;11:1398. doi: 10.3389/fmicb.2020.01398. eCollection 2020. Front Microbiol. 2020. PMID: 32765431 Free PMC article.
-
Cystoderma yongpingense sp. nov. (Squamanitaceae, Agaricales) a new species from southwestern China.
Feng YL, Sun DF, Fang Y, Hua R, Liu SX, Ma M, Guo X. Feng YL, et al. Mycoscience. 2024 May 2;65(3):151-155. doi: 10.47371/mycosci.2024.02.008. eCollection 2024. Mycoscience. 2024. PMID: 39233760 Free PMC article.
-
Intercontinental transmission and local demographic expansion of SARS-CoV-2.
Hu HY, Yan F, Zhu JM, Karuno AP, Zhou WW. Hu HY, et al. Epidemiol Infect. 2021 Apr 13;149:e94. doi: 10.1017/S0950268821000777. Epidemiol Infect. 2021. PMID: 33845928 Free PMC article.
References
-
- Adachi J, Hasegawa M. MOLPHY version 2.3—programs for molecular phylogenetics based on maximum likelihood. Minato-ku (Tokyo): Institute of Statistical Mathematics; 1996.
-
- Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55:539–552. - PubMed
-
- Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol. 2003;20:248–254. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources