Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study - PubMed
Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study
N A O'Rourke et al. Neuron. 1990 Aug.
Abstract
Dynamic remodeling of retinal ganglion cell terminal arbors has been proposed to contribute to formation of the topographically ordered retinotectal projection. To test this directly, the growth of individual terminal arbors was observed in live X. laevis tadpoles using a confocal microscope to visualize their complex three-dimensional structure. During initial development, nasal and temporal retinal arbors covered overlapping tectal areas. Despite subsequent remodeling, the dimensions and positions of the temporal arbors remained relatively stable. In contrast, the nasal arbors grew caudally, as they extended caudal branches and retracted rostral branches. These results suggest that differences in the remodeling of the nasal and temporal arbors lead to the emergence of retino-topography along the rostrocaudal axis of the tectum. All the terminal arbors were dynamic, including those with stable dimensions, suggesting that continual remodeling of arbors may be a universal feature of neuronal projections.
Similar articles
-
Nakamura H, O'Leary DD. Nakamura H, et al. J Neurosci. 1989 Nov;9(11):3776-95. doi: 10.1523/JNEUROSCI.09-11-03776.1989. J Neurosci. 1989. PMID: 2585055 Free PMC article.
-
Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
Cogen J, Cohen-Cory S. Cogen J, et al. J Neurobiol. 2000 Nov 5;45(2):120-33. doi: 10.1002/1097-4695(20001105)45:2<120::aid-neu6>3.0.co;2-6. J Neurobiol. 2000. PMID: 11018773
-
Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study.
Stuermer CA. Stuermer CA. J Comp Neurol. 1984 Oct 20;229(2):214-32. doi: 10.1002/cne.902290207. J Comp Neurol. 1984. PMID: 6501601
-
Wizenmann A, Bähr M. Wizenmann A, et al. Cell Tissue Res. 1997 Nov;290(2):395-403. doi: 10.1007/s004410050946. Cell Tissue Res. 1997. PMID: 9321703 Review.
-
Functional guidance components and their cellular distribution in retinotectal co-cultures.
Davenport RW. Davenport RW. Cell Tissue Res. 1997 Nov;290(2):201-8. doi: 10.1007/s004410050924. Cell Tissue Res. 1997. PMID: 9321681 Review.
Cited by
-
Learning to see: patterned visual activity and the development of visual function.
Ruthazer ES, Aizenman CD. Ruthazer ES, et al. Trends Neurosci. 2010 Apr;33(4):183-92. doi: 10.1016/j.tins.2010.01.003. Epub 2010 Feb 10. Trends Neurosci. 2010. PMID: 20153060 Free PMC article. Review.
-
Nikolakopoulou AM, Meynard MM, Marshak S, Cohen-Cory S. Nikolakopoulou AM, et al. J Comp Neurol. 2010 Apr 1;518(7):972-89. doi: 10.1002/cne.22258. J Comp Neurol. 2010. PMID: 20127801 Free PMC article.
-
Spead O, Weaver CJ, Moreland T, Poulain FE. Spead O, et al. Development. 2021 Nov 15;148(22):dev199584. doi: 10.1242/dev.199584. Epub 2021 Nov 15. Development. 2021. PMID: 34698769 Free PMC article.
-
Rules for Shaping Neural Connections in the Developing Brain.
Kutsarova E, Munz M, Ruthazer ES. Kutsarova E, et al. Front Neural Circuits. 2017 Jan 10;10:111. doi: 10.3389/fncir.2016.00111. eCollection 2016. Front Neural Circuits. 2017. PMID: 28119574 Free PMC article. Review.
-
Zou DJ, Cline HT. Zou DJ, et al. J Neurosci. 1999 Oct 15;19(20):8909-18. doi: 10.1523/JNEUROSCI.19-20-08909.1999. J Neurosci. 1999. PMID: 10516310 Free PMC article.