Temperature during the free-living phase of an ectoparasite influences the emergence pattern of the infective phase - PubMed
. 2013 Sep;140(11):1357-67.
doi: 10.1017/S0031182013000929. Epub 2013 Jul 22.
Affiliations
- PMID: 23870073
- DOI: 10.1017/S0031182013000929
Temperature during the free-living phase of an ectoparasite influences the emergence pattern of the infective phase
M Amat-Valero et al. Parasitology. 2013 Sep.
Abstract
Understanding the population dynamics and co-evolution of host–parasite systems requires detailed knowledge of their phenology which, in turn, requires a deep knowledge of the effect of abiotic factors on the life cycles of organisms. Temperature is known to be a key environmental influence that participates in the regulation of diapause. Yet, not much is known about the effect of temperature on the free-living stages of true parasites and how it may influence host–parasite interactions. Here we experimentally study the effect of ambient temperature on overwintering pupae of Carnus hemapterus (Diptera, Carnidae), an ectoparasitic fly of various bird species. We also test whether chilling is a prerequisite for completion of diapause in this species. In the course of three winter seasons we experimentally exposed carnid pupae from nests of various host species to spring temperatures with and without chilling and recorded the emergence patterns in experimental and control groups. Experimental groups showed an advanced emergence date, a lower emergence rate and, consequently, a protracted emergence period. Chilling had no obvious effect on the start of emergence but it did advance the mean emergence date, shortened the length of the emergence period when compared with the control treatment and increased the emergence rate when compared with the spring treatment. This study identifies an environmental cue, namely temperature during the free-living stage, affecting the emergence of a widespread parasite and demonstrates the plasticity of diapause in this parasite. Our findings are of potential significance in understanding host–parasite interactions.
Similar articles
-
Calero-Torralbo MA, Valera F. Calero-Torralbo MA, et al. Parasitology. 2008 Sep;135(11):1343-52. doi: 10.1017/S0031182008004885. Epub 2008 Aug 28. Parasitology. 2008. PMID: 18752706
-
Valera F, Casas-Crivillé A, Calero-Torralbo MA. Valera F, et al. Parasitology. 2006 Aug;133(Pt 2):179-86. doi: 10.1017/S0031182006009899. Epub 2006 Apr 20. Parasitology. 2006. PMID: 16623966
-
Mixed life-history strategies in a local population of the ectoparasitic fly Carnus hemapterus.
Amat-Valero M, Václav R, Martínez T, Valera F. Amat-Valero M, et al. Parasitology. 2012 Jul;139(8):1045-53. doi: 10.1017/S0031182012000534. Epub 2012 May 1. Parasitology. 2012. PMID: 22716907
-
Ecology of the free-living stages of major trichostrongylid parasites of sheep.
O'Connor LJ, Walkden-Brown SW, Kahn LP. O'Connor LJ, et al. Vet Parasitol. 2006 Nov 30;142(1-2):1-15. doi: 10.1016/j.vetpar.2006.08.035. Epub 2006 Sep 29. Vet Parasitol. 2006. PMID: 17011129 Review.
-
Parasites and low temperatures.
Wharton DA. Wharton DA. Parasitology. 1999;119 Suppl:S7-17. doi: 10.1017/s0031182000084614. Parasitology. 1999. PMID: 11254149 Review.
Cited by
-
Castaño-Vázquez F, Schumm YR, Bentele A, Quillfeldt P, Merino S. Castaño-Vázquez F, et al. Int J Parasitol Parasites Wildl. 2021 Mar 22;14:287-297. doi: 10.1016/j.ijppaw.2021.03.010. eCollection 2021 Apr. Int J Parasitol Parasites Wildl. 2021. PMID: 33898230 Free PMC article. Review.
-
Elevated nest temperature has opposing effects on host species infested with parasitic nest flies.
Albert L, Rumschlag S, Parker A, Vaziri G, Knutie SA. Albert L, et al. Oecologia. 2023 Apr;201(4):877-886. doi: 10.1007/s00442-023-05343-8. Epub 2023 Apr 3. Oecologia. 2023. PMID: 37012554
-
Marcus E, Dagan T, Asli W, Ben-Ami F. Marcus E, et al. Philos Trans R Soc Lond B Biol Sci. 2023 Mar 27;378(1873):20220015. doi: 10.1098/rstb.2022.0015. Epub 2023 Feb 6. Philos Trans R Soc Lond B Biol Sci. 2023. PMID: 36744562 Free PMC article.
-
Schwartz T, Genouville A, Besnard A. Schwartz T, et al. Ecol Evol. 2020 Nov 18;10(24):13649-13663. doi: 10.1002/ece3.6871. eCollection 2020 Dec. Ecol Evol. 2020. PMID: 33391670 Free PMC article.
-
Cavity types and microclimate: implications for ecological, evolutionary, and conservation studies.
Amat-Valero M, Calero-Torralbo MA, Václav R, Valera F. Amat-Valero M, et al. Int J Biometeorol. 2014 Nov;58(9):1983-94. doi: 10.1007/s00484-014-0801-0. Epub 2014 Feb 27. Int J Biometeorol. 2014. PMID: 24573376
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources