Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells - PubMed
- ️Tue Jan 01 2013
. 2013 Oct 15;19(20):5636-46.
doi: 10.1158/1078-0432.CCR-13-0458. Epub 2013 Jul 19.
Affiliations
- PMID: 23873688
- DOI: 10.1158/1078-0432.CCR-13-0458
Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells
Liza B John et al. Clin Cancer Res. 2013.
Abstract
Purpose: To determine the antitumor efficacy and toxicity of a novel combination approach involving adoptive T-cell immunotherapy using chimeric antigen receptor (CAR) T cells with an immunomodulatory reagent for blocking immunosuppression.
Experimental design: We examined whether administration of a PD-1 blocking antibody could increase the therapeutic activity of CAR T cells against two different Her-2(+) tumors. The use of a self-antigen mouse model enabled investigation into the efficacy, mechanism, and toxicity of this combination approach.
Results: In this study, we first showed a significant increase in the level of PD-1 expressed on transduced anti-Her-2 CD8(+) T cells following antigen-specific stimulation with PD-L1(+) tumor cells and that markers of activation and proliferation were increased in anti-Her-2 T cells in the presence of anti-PD-1 antibody. In adoptive transfer studies in Her-2 transgenic recipient mice, we showed a significant improvement in growth inhibition of two different Her-2(+) tumors treated with anti-Her-2 T cells in combination with anti-PD-1 antibody. The therapeutic effects observed correlated with increased function of anti-Her-2 T cells following PD-1 blockade. Strikingly, a significant decrease in the percentage of Gr1(+) CD11b(+) myeloid-derived suppressor cells (MDSC) was observed in the tumor microenvironment of mice treated with the combination therapy. Importantly, increased antitumor effects were not associated with any autoimmune pathology in normal tissue expressing Her-2 antigen.
Conclusion: This study shows that specifically blocking PD-1 immunosuppression can potently enhance CAR T-cell therapy that has significant implications for potentially improving therapeutic outcomes of this approach in patients with cancer.
©2013 AACR.
Comment in
-
Better performance of CARs deprived of the PD-1 brake.
Morales-Kastresana A, Labiano S, Quetglas JI, Melero I. Morales-Kastresana A, et al. Clin Cancer Res. 2013 Oct 15;19(20):5546-8. doi: 10.1158/1078-0432.CCR-13-2157. Epub 2013 Sep 4. Clin Cancer Res. 2013. PMID: 24004672
Similar articles
-
Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
Allard B, Pommey S, Smyth MJ, Stagg J. Allard B, et al. Clin Cancer Res. 2013 Oct 15;19(20):5626-35. doi: 10.1158/1078-0432.CCR-13-0545. Epub 2013 Aug 27. Clin Cancer Res. 2013. PMID: 23983257
-
Tumor ablation by gene-modified T cells in the absence of autoimmunity.
Wang LX, Westwood JA, Moeller M, Duong CP, Wei WZ, Malaterre J, Trapani JA, Neeson P, Smyth MJ, Kershaw MH, Darcy PK. Wang LX, et al. Cancer Res. 2010 Dec 1;70(23):9591-8. doi: 10.1158/0008-5472.CAN-10-2884. Epub 2010 Nov 23. Cancer Res. 2010. PMID: 21098715
-
Guo Z, Wang X, Cheng D, Xia Z, Luan M, Zhang S. Guo Z, et al. PLoS One. 2014 Feb 27;9(2):e89350. doi: 10.1371/journal.pone.0089350. eCollection 2014. PLoS One. 2014. PMID: 24586709 Free PMC article.
-
Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system.
Pico de Coaña Y, Choudhury A, Kiessling R. Pico de Coaña Y, et al. Trends Mol Med. 2015 Aug;21(8):482-91. doi: 10.1016/j.molmed.2015.05.005. Epub 2015 Jun 16. Trends Mol Med. 2015. PMID: 26091825 Review.
-
Weber J. Weber J. Semin Oncol. 2010 Oct;37(5):430-9. doi: 10.1053/j.seminoncol.2010.09.005. Semin Oncol. 2010. PMID: 21074057 Review.
Cited by
-
Hu Q, Li H, Archibong E, Chen Q, Ruan H, Ahn S, Dukhovlinova E, Kang Y, Wen D, Dotti G, Gu Z. Hu Q, et al. Nat Biomed Eng. 2021 Sep;5(9):1038-1047. doi: 10.1038/s41551-021-00712-1. Epub 2021 Apr 26. Nat Biomed Eng. 2021. PMID: 33903744 Free PMC article.
-
Zhou X, Wu J, Duan C, Liu Y. Zhou X, et al. J Immunol Res. 2020 Oct 1;2020:7890985. doi: 10.1155/2020/7890985. eCollection 2020. J Immunol Res. 2020. PMID: 33062726 Free PMC article.
-
Targeting immune checkpoints in malignant glioma.
Zhang X, Zhu S, Li T, Liu YJ, Chen W, Chen J. Zhang X, et al. Oncotarget. 2017 Jan 24;8(4):7157-7174. doi: 10.18632/oncotarget.12702. Oncotarget. 2017. PMID: 27756892 Free PMC article. Review.
-
Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer.
Hillerdal V, Essand M. Hillerdal V, et al. BioDrugs. 2015 Apr;29(2):75-89. doi: 10.1007/s40259-015-0122-9. BioDrugs. 2015. PMID: 25859858 Free PMC article. Review.
-
Targeting Immune Checkpoints in Hematologic Malignancies.
Alatrash G, Daver N, Mittendorf EA. Alatrash G, et al. Pharmacol Rev. 2016 Oct;68(4):1014-1025. doi: 10.1124/pr.116.012682. Pharmacol Rev. 2016. PMID: 27664133 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous