trans-Cyclooctene--a stable, voracious dienophile for bioorthogonal labeling - PubMed
Review
trans-Cyclooctene--a stable, voracious dienophile for bioorthogonal labeling
Ramajeyam Selvaraj et al. Curr Opin Chem Biol. 2013 Oct.
Abstract
Discussed herein is the development and advancement of trans-cyclooctene as a tool for facilitating bioorthogonal labeling through reactions with s-tetrazines. While a number of strained alkenes have been shown to combine with tetrazines for applications in bioorthogonal labeling, trans-cyclooctene enables fastest reactivity at low concentration with rate constants in excess of k2=10(6) M(-1) s(-1). In the present article, we describe advances in computation and synthesis that have enabled applications in chemical biology and nuclear medicine.
Copyright © 2013 Elsevier Ltd. All rights reserved.
Figures

trans-Cyclooctene (TCO) as a tool for chemical biology and in vivo imaging. (a) The advancement of TCO as a tool is a multidisciplinary effort involving high-level computation, new synthetic methodology, chemical biology and nuclear medicine. (b) The significance of high rate constants is illustrated by simple table of rate data and corresponding half-lives. (c) Mechanism of the tetrazine–TCO ligation.

Tetrazine–TCO ligation as a tool for nuclear medicine (a) Pretargeted SPECT imaging in live mice through initial administration of a TCO-antibody conjugate with later administration of a tetrazine–111In-DOTA conjugate. (b) 18F-labeled TCO 12 enables rapid construction of PET-probes. In the shown example, the importance of efficient labeling at nearly equimolar stoichiometry is emphasized by a blocking experiment, where coinjecting with a 5-fold excess of unlabeled exendin-4 resulted in a greatly reduced signal. (c) Tetrazines commonly utilized in bioconjugation studies.

(a) TCO conformation has a significant effect on strain energy in the ground state. (b) Computation correctly predicted that a conformationally strained TCO (‘s-TCO’) would display enhanced reactivity relative to parent TCO. (c) With more reactive tetrazine 21, s-TCO derivative reacts with a rate that is too quick to measure by stopped flow kinetics.

Tetrazine–TCO ligation with genetically encoded proteins (a) A tetrazine-derived unnatural amino acid can be genetically encoded site-specifically into proteins of interest. s-TCO derivatives can be used to tag the unnatural amino acids with fast rates in vivo. (b) A TCO-derivatized lysine has been site specifically incorporated into proteins in E. coli and mammalian cells, and used for rapid fluorogenic labeling in live cells. (c) Current limitations of s-TCO.
Similar articles
-
Computation-Guided Discovery of Diazole Monosubstituted Tetrazines as Optimal Bioorthogonal Tools.
Li Y, Su Y, Wang H, Xie Y, Wang X, Chang L, Jing Y, Zhang J, Ma JA, Jin H, Lou X, Peng Q, Liu T. Li Y, et al. J Am Chem Soc. 2024 Oct 2;146(39):26884-26896. doi: 10.1021/jacs.4c07958. Epub 2024 Aug 20. J Am Chem Soc. 2024. PMID: 39164893
-
Cycloadditions of Trans-Cyclooctenes and Nitrones as Tools for Bioorthogonal Labelling.
Margison KD, Bilodeau DA, Mahmoudi F, Pezacki JP. Margison KD, et al. Chembiochem. 2020 Apr 1;21(7):948-951. doi: 10.1002/cbic.201900627. Epub 2019 Nov 27. Chembiochem. 2020. PMID: 31617669
-
Highly Stable trans-Cyclooctene Amino Acids for Live-Cell Labeling.
Hoffmann JE, Plass T, Nikić I, Aramburu IV, Koehler C, Gillandt H, Lemke EA, Schultz C. Hoffmann JE, et al. Chemistry. 2015 Aug 24;21(35):12266-70. doi: 10.1002/chem.201501647. Epub 2015 Jul 15. Chemistry. 2015. PMID: 26177861
-
Fang Y, Hillman AS, Fox JM. Fang Y, et al. Top Curr Chem (Cham). 2024 May 4;382(2):15. doi: 10.1007/s41061-024-00455-y. Top Curr Chem (Cham). 2024. PMID: 38703255 Review.
-
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Adhikari K, et al. EJNMMI Radiopharm Chem. 2024 Jun 6;9(1):47. doi: 10.1186/s41181-024-00275-x. EJNMMI Radiopharm Chem. 2024. PMID: 38844698 Free PMC article. Review.
Cited by
-
Site-Specific Lipidation Enhances IFITM3 Membrane Interactions and Antiviral Activity.
Garst EH, Lee H, Das T, Bhattacharya S, Percher A, Wiewiora R, Witte IP, Li Y, Peng T, Im W, Hang HC. Garst EH, et al. ACS Chem Biol. 2021 May 21;16(5):844-856. doi: 10.1021/acschembio.1c00013. Epub 2021 Apr 22. ACS Chem Biol. 2021. PMID: 33887136 Free PMC article.
-
Májek M, Trtúšek M. Májek M, et al. RSC Adv. 2024 Jan 31;14(7):4345-4351. doi: 10.1039/d3ra08712c. eCollection 2024 Jan 31. RSC Adv. 2024. PMID: 38304564 Free PMC article.
-
A Single-Step Chemoenzymatic Reaction for the Construction of Antibody-Cell Conjugates.
Li J, Chen M, Liu Z, Zhang L, Felding BH, Moremen KW, Lauvau G, Abadier M, Ley K, Wu P. Li J, et al. ACS Cent Sci. 2018 Dec 26;4(12):1633-1641. doi: 10.1021/acscentsci.8b00552. Epub 2018 Dec 7. ACS Cent Sci. 2018. PMID: 30648147 Free PMC article.
-
Tu J, Svatunek D, Parvez S, Liu AC, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Tu J, et al. Angew Chem Int Ed Engl. 2019 Jul 1;58(27):9043-9048. doi: 10.1002/anie.201903877. Epub 2019 Jun 6. Angew Chem Int Ed Engl. 2019. PMID: 31062496 Free PMC article.
-
Fast Diazaborine Formation of Semicarbazide Enables Facile Labeling of Bacterial Pathogens.
Bandyopadhyay A, Cambray S, Gao J. Bandyopadhyay A, et al. J Am Chem Soc. 2017 Jan 18;139(2):871-878. doi: 10.1021/jacs.6b11115. Epub 2017 Jan 3. J Am Chem Soc. 2017. PMID: 27992180 Free PMC article.
References
-
- Durek T, Alewood PF. Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew Chem Int Ed. 2011;50:12042–12045. - PubMed
-
- McFarland JM, Francis MB. Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J Am Chem Soc. 2005;127:13490–13491. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources