If the cap fits, wear it: an overview of telomeric structures over evolution - PubMed
Review
If the cap fits, wear it: an overview of telomeric structures over evolution
Nick Fulcher et al. Cell Mol Life Sci. 2014 Mar.
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Figures
![Fig. 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e043/11113737/ec792dbe75a6/18_2013_1469_Fig1_HTML.gif)
Telomeric structures from prokaryotes, mitochondria, and viruses. The presence of covalently closed hairpin structures at terminal regions has been observed within B. burgdorferi, A. tumefaciens, and the Vaccinia virus (VACV) (a). 5′ overhangs of the human Ad2/5 adenovirus are bound by a terminal protein (TP) (b). Mitochondrial telomeres from the green algae C. reinhardtii comprise long inverted terminal repeat regions with a 3′ overhang (c) whereas C. parapsilosis exhibits tandem repeats with 5′ overhangs (d)
![Fig. 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e043/11113737/a6d32bcc53c6/18_2013_1469_Fig2_HTML.gif)
Canonical telomeres exhibiting TTAGG-like sequences. The shelterin complex is responsible for sequestration of the G-overhang into duplex double-stranded telomeric DNA (a). Once hidden, the G-overhang is no longer susceptible to DNA repair processes or the actions of telomerase. A similar complex is also found in fission yeast with the conserved functions of Pot1 (b). Budding yeast telomeres are protected by the CST (Cdc13/Stn1/Ten1) complex which associates with the G-overhang (c). C. elegans telomeres contain 5′ overhangs that are bound by CeOB2 (d). Blunt-ended telomeres present at a subset of A. thaliana chromosome ends are protected by the Ku heterodimer (e)
![Fig. 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e043/11113737/f4a8c9d9d243/18_2013_1469_Fig3_HTML.gif)
Telomeric retrotransposons in Drosophila melanogaster. Telomeric DNA from D. melanogaster comprises tandem repeats of retrotransposons HeT-A, TAHRE, and TART (a). Telomeric retrotransposons are capped by the terminin complex (b, figure adapted from Raffa et al. [159]). Telomeric retrotransposition results in telomere elongation (c). Transcripts are exported from the nucleus where GAG and RT proteins are translated. These proteins are then responsible for localization of transcripts to chromosome termini where they contribute to telomere elongation
Similar articles
-
Garavís M, González C, Villasante A. Garavís M, et al. Genome Biol Evol. 2013;5(6):1142-50. doi: 10.1093/gbe/evt079. Genome Biol Evol. 2013. PMID: 23699225 Free PMC article.
-
Structural biology of telomeres and telomerase.
Smith EM, Pendlebury DF, Nandakumar J. Smith EM, et al. Cell Mol Life Sci. 2020 Jan;77(1):61-79. doi: 10.1007/s00018-019-03369-x. Epub 2019 Nov 14. Cell Mol Life Sci. 2020. PMID: 31728577 Free PMC article. Review.
-
The hnRNP A1 homolog Hrb87F/Hrp36 is important for telomere maintenance in Drosophila melanogaster.
Singh AK, Lakhotia SC. Singh AK, et al. Chromosoma. 2016 Jun;125(3):373-88. doi: 10.1007/s00412-015-0540-y. Epub 2015 Sep 16. Chromosoma. 2016. PMID: 26373285
-
Chan SR, Blackburn EH. Chan SR, et al. Philos Trans R Soc Lond B Biol Sci. 2004 Jan 29;359(1441):109-21. doi: 10.1098/rstb.2003.1370. Philos Trans R Soc Lond B Biol Sci. 2004. PMID: 15065663 Free PMC article. Review.
-
Telomere maintenance in Drosophila: rapid transposon evolution at chromosome ends.
Villasante A, de Pablos B, Méndez-Lago M, Abad JP. Villasante A, et al. Cell Cycle. 2008 Jul 15;7(14):2134-8. doi: 10.4161/cc.7.14.6275. Epub 2008 May 12. Cell Cycle. 2008. PMID: 18635962 Review.
Cited by
-
Protection of Drosophila chromosome ends through minimal telomere capping.
Dubruille R, Loppin B. Dubruille R, et al. J Cell Sci. 2015 May 15;128(10):1969-81. doi: 10.1242/jcs.167825. Epub 2015 Apr 23. J Cell Sci. 2015. PMID: 25908850 Free PMC article.
-
Mobile Group II Introns as Ancestral Eukaryotic Elements.
Novikova O, Belfort M. Novikova O, et al. Trends Genet. 2017 Nov;33(11):773-783. doi: 10.1016/j.tig.2017.07.009. Epub 2017 Aug 14. Trends Genet. 2017. PMID: 28818345 Free PMC article. Review.
-
Tomaska L, Nosek J, Kar A, Willcox S, Griffith JD. Tomaska L, et al. Front Genet. 2019 Aug 14;10:792. doi: 10.3389/fgene.2019.00792. eCollection 2019. Front Genet. 2019. PMID: 31475042 Free PMC article.
-
Molecular characterization of Chlamydomonas reinhardtii telomeres and telomerase mutants.
Eberhard S, Valuchova S, Ravat J, Fulneček J, Jolivet P, Bujaldon S, Lemaire SD, Wollman FA, Teixeira MT, Riha K, Xu Z. Eberhard S, et al. Life Sci Alliance. 2019 Jun 3;2(3):e201900315. doi: 10.26508/lsa.201900315. Print 2019 Jun. Life Sci Alliance. 2019. PMID: 31160377 Free PMC article.
-
Structure of Dictyostelium discoideum telomeres. Analysis of possible replication mechanisms.
Rodriguez-Centeno J, Manguán-García C, Perona R, Sastre L. Rodriguez-Centeno J, et al. PLoS One. 2019 Sep 24;14(9):e0222909. doi: 10.1371/journal.pone.0222909. eCollection 2019. PLoS One. 2019. PMID: 31550289 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous