Evolutionary potential of marine phytoplankton under ocean acidification - PubMed
Evolutionary potential of marine phytoplankton under ocean acidification
Sinéad Collins et al. Evol Appl. 2014 Jan.
Abstract
Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.
Keywords: adaptation; experimental evolution; global change; ocean acidification; phytoplankton.
Figures

Phylogenetic diversity of eukaryotes. The four major lineages of eukaryotic phytoplankton are highlighted in bold typeface (prasinophytes, coccolithophorids, diatoms and dinoflagellates). These lineages are deeply divergent, highlighting their potentially divergent responses to the effects of climate change. Branching order among some lineages is unresolved (dotted lines).

(A) Intraspecific variation in growth rate (μ) among eight isolates of the diatom Ditylum brightwellii collected from Hood Canal, WA, USA (Adapted from Rynearson and Armbrust 2000). B) Simulation of the change in population growth rate (μ) over time. At time zero, all eight isolates represent an equal fraction of the population and thus the population growth rate is an average of the individual growth rates in panel A. Over time, the fastest-growing isolates become more abundant in the simulated population, driving average population growth rates up.
Similar articles
-
Will life find a way? Evolution of marine species under global change.
Calosi P, De Wit P, Thor P, Dupont S. Calosi P, et al. Evol Appl. 2016 Sep 28;9(9):1035-1042. doi: 10.1111/eva.12418. eCollection 2016 Oct. Evol Appl. 2016. PMID: 27695513 Free PMC article.
-
Plasticity predicts evolution in a marine alga.
Schaum CE, Collins S. Schaum CE, et al. Proc Biol Sci. 2014 Oct 22;281(1793):20141486. doi: 10.1098/rspb.2014.1486. Epub 2014 Sep 10. Proc Biol Sci. 2014. PMID: 25209938 Free PMC article.
-
Experimental evolution meets marine phytoplankton.
Reusch TB, Boyd PW. Reusch TB, et al. Evolution. 2013 Jul;67(7):1849-59. doi: 10.1111/evo.12035. Epub 2013 Jan 14. Evolution. 2013. PMID: 23815643
-
Kelly MW, Griffiths JS. Kelly MW, et al. Biol Bull. 2021 Aug;241(1):30-42. doi: 10.1086/715109. Epub 2021 Jun 30. Biol Bull. 2021. PMID: 34436966 Review.
-
Biochemical adaptation to ocean acidification.
Stillman JH, Paganini AW. Stillman JH, et al. J Exp Biol. 2015 Jun;218(Pt 12):1946-55. doi: 10.1242/jeb.115584. J Exp Biol. 2015. PMID: 26085671 Review.
Cited by
-
Growth strategies of a model picoplankter depend on social milieu and pCO2.
Collins S, Schaum CE. Collins S, et al. Proc Biol Sci. 2021 Jul 28;288(1955):20211154. doi: 10.1098/rspb.2021.1154. Epub 2021 Jul 28. Proc Biol Sci. 2021. PMID: 34315257 Free PMC article.
-
Phytoplankton adapt to changing ocean environments.
Irwin AJ, Finkel ZV, Müller-Karger FE, Troccoli Ghinaglia L. Irwin AJ, et al. Proc Natl Acad Sci U S A. 2015 May 5;112(18):5762-6. doi: 10.1073/pnas.1414752112. Epub 2015 Apr 20. Proc Natl Acad Sci U S A. 2015. PMID: 25902497 Free PMC article.
-
A 120-year record of resilience to environmental change in brachiopods.
Cross EL, Harper EM, Peck LS. Cross EL, et al. Glob Chang Biol. 2018 Jun;24(6):2262-2271. doi: 10.1111/gcb.14085. Epub 2018 Mar 14. Glob Chang Biol. 2018. PMID: 29536586 Free PMC article.
-
Hinners J, Kremp A, Hense I. Hinners J, et al. Proc Biol Sci. 2017 Oct 11;284(1864):20171888. doi: 10.1098/rspb.2017.1888. Proc Biol Sci. 2017. PMID: 29021182 Free PMC article.
-
Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton.
Schaum CE, Rost B, Collins S. Schaum CE, et al. ISME J. 2016 Jan;10(1):75-84. doi: 10.1038/ismej.2015.102. Epub 2015 Jun 30. ISME J. 2016. PMID: 26125683 Free PMC article.
References
-
- Alpermann TJ, Tillmann U, Beszteri B, Cembella AD, John U. Phenotypic and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae) Journal of Phycology. 2010;46:18–32.
-
- Aparicio S, Chapman J, Stupka E, Putnam N, Chia J-M, Dehal P, Christoffels A, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002;297:1301–1310. - PubMed
-
- Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, et al. The genome of the diatomThalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86. - PubMed
-
- Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science. 1999;283:365–367. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources