Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer's disease - PubMed
- ️Wed Jan 01 2014
Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer's disease
Sonia George et al. Acta Neuropathol Commun. 2014.
Erratum in
-
George S, Rönnbäck A, Gouras GK, Petit GH, Grueninger F, Winblad B, Graff C, Brundin P. George S, et al. Acta Neuropathol Commun. 2024 Feb 14;12(1):26. doi: 10.1186/s40478-023-01712-9. Acta Neuropathol Commun. 2024. PMID: 38355705 Free PMC article. No abstract available.
Abstract
Background: The progressive development of Alzheimer's disease (AD) pathology follows a spatiotemporal pattern in the human brain. In a transgenic (Tg) mouse model of AD expressing amyloid precursor protein (APP) with the arctic (E693G) mutation, pathology spreads along anatomically connected structures. Amyloid-β (Aβ) pathology first appears in the subiculum and is later detected in interconnected brain regions, including the retrosplenial cortex. We investigated whether the spatiotemporal pattern of Aβ pathology in the Tg APP arctic mice to interconnected brain structures can be interrupted by destroying neurons using a neurotoxin and thereby disconnecting the neural circuitry.
Results: We performed partial unilateral ibotenic acid lesions of the subiculum (first structure affected by Aβ pathology) in young Tg APParc mice, prior to the onset of pathology. We assessed Aβ/C99 pathology in mice aged up to 6 months after injecting ibotenate into the subiculum. Compared to the brains of intact Tg APP arctic mice, we observed significantly decreased Aβ/C99 pathology in the ipsilateral dorsal subiculum, CA1 region of the hippocampus and the retrosplenial cortex; regions connecting to and from the dorsal subiculum. By contrast, Aβ/C99 pathology was unchanged in the contralateral hippocampus in the mice with lesions.
Conclusion: These results, obtained in an animal model of AD, support the notion that Aβ/C99 pathology is transmitted between interconnected neurons in AD.
Figures

Illustration of the progressive diffuse amyloid deposition in homozygous TgAPParc mice with altered pathology following subiculum lesion. Anatomical connections between brain regions are marked by arrows. Colored text indicates the age when the first diffuse amyloid deposits are detected in the respective brain regions. Syringe marks the site of ibotenic acid lesion. Amyloid deposition affects functionally connected brain regions sequentially from the subiculum and brain structures receiving input from subiculum including the retrosplenial cortex, mammillary body, and thalamus. Decreased Aβ/C99 pathology was observed in the subiculum, CA1 and RSG (indicated). Schematic modified from Rönnback et al., 2012 [7], with permission.

Aβ/C99 immunoreactivity in dorsal subiculum, CA1 and RSG of Tg APParc mice that have undergone partial destruction of the subiculum. A. Tg APParc mice aged 3 months comparing lesioned and intact hemispheres in the dorsal subiculum and CA1 of Tg mice injected with PBS (TG + PBS), Tg mice injected with ibotenic acid (TG + Ibo) and WT mice injected with ibotenic acid (WT + Ibo). We observed decreased Aβ pathology in both the dorsal subiculum and CA1 in Tg mice injected with ibotenic acid (Tg + Ibo). B. Aβ/C99 immunoreactivity in dorsal subiculum, CA1 and RSG of lesioned Tg APParc mice aged 6 months. Tg mice with ibotenic acid lesions have decreased Aβ/C99 immunoreactivity in the dorsal subiculum, CA1 and RSG. C. Quantification of the Aβ/C99 immunoreactivity comparing Aβ/C99 immunoreactivity (Aβ IR) in the lesioned hemisphere as a percentage of the contralateral side. Tg mice with ibotenic acid lesions have significantly decreased Aβ/C99 immunoreactivity in the damaged hemisphere in the dorsal subiculum and CA1 at ages 3 and 6 months. D. Plots representing cell count in the subiculum (percentage of contralateral side) vs. Aβ/C99 immunoreactivity in Tg + Ibo animals for the dorsal subiculum, CA1 and RSG of mice aged 3 and 6 months. Plots indicate a no correlation, rs = 0.2, p > 0.05 (3 and 6 months dorsal subiculum, CA1 and RSG). Data expressed as means ± SEM. Asterisk denotes statistical significance (*p < 0.05).

Cell counts in the dorsal subiculum, CA1 and RSG of lesioned Tg APParc mice aged 3 and 6 months. A. Representative images of cresyl violet stained tissue of Tg APParc mice aged 6 months comparing lesioned and intact hemispheres in the dorsal subiculum, CA1 and RSG of Tg mice injected with PBS (Tg + PBS), Tg mice injected with ibotenic acid (TG + Ibo) and WT mice injected with ibotenate (WT + Ibo). B. Quantification of cell counts comparing the percentage cell loss to the contralateral side. Data expressed as means ± SEM. Asterisk denotes statistical significance (*p < 0.05). CA1 and RSG (indicated).
Similar articles
-
Rönnbäck A, Sagelius H, Bergstedt KD, Näslund J, Westermark GT, Winblad B, Graff C. Rönnbäck A, et al. Neurobiol Aging. 2012 Apr;33(4):831.e11-9. doi: 10.1016/j.neurobiolaging.2011.07.012. Epub 2011 Aug 31. Neurobiol Aging. 2012. PMID: 21880397
-
Pagnon de la Vega M, Syvänen S, Giedraitis V, Hooley M, Konstantinidis E, Meier SR, Rokka J, Eriksson J, Aguilar X, Spires-Jones TL, Lannfelt L, Nilsson LNG, Erlandsson A, Hultqvist G, Ingelsson M, Sehlin D. Pagnon de la Vega M, et al. Acta Neuropathol Commun. 2024 Feb 5;12(1):22. doi: 10.1186/s40478-024-01734-x. Acta Neuropathol Commun. 2024. PMID: 38317196 Free PMC article.
-
Gomes LA, Hipp SA, Rijal Upadhaya A, Balakrishnan K, Ospitalieri S, Koper MJ, Largo-Barrientos P, Uytterhoeven V, Reichwald J, Rabe S, Vandenberghe R, von Arnim CAF, Tousseyn T, Feederle R, Giudici C, Willem M, Staufenbiel M, Thal DR. Gomes LA, et al. Acta Neuropathol. 2019 Dec;138(6):913-941. doi: 10.1007/s00401-019-02053-5. Epub 2019 Aug 14. Acta Neuropathol. 2019. PMID: 31414210
-
Crews L, Rockenstein E, Masliah E. Crews L, et al. Brain Struct Funct. 2010 Mar;214(2-3):111-26. doi: 10.1007/s00429-009-0232-6. Epub 2009 Nov 29. Brain Struct Funct. 2010. PMID: 20091183 Free PMC article. Review.
-
Shedding light on subiculum's role in human brain disorders.
Baset A, Huang F. Baset A, et al. Brain Res Bull. 2024 Aug;214:110993. doi: 10.1016/j.brainresbull.2024.110993. Epub 2024 May 31. Brain Res Bull. 2024. PMID: 38825254 Review.
Cited by
-
Rogers Flattery CN, Rosen RF, Farberg AS, Dooyema JM, Hof PR, Sherwood CC, Walker LC, Preuss TM. Rogers Flattery CN, et al. Brain Struct Funct. 2020 Nov;225(8):2521-2531. doi: 10.1007/s00429-020-02139-x. Epub 2020 Sep 9. Brain Struct Funct. 2020. PMID: 32909100 Free PMC article.
-
Aggleton JP, Pralus A, Nelson AJ, Hornberger M. Aggleton JP, et al. Brain. 2016 Jul;139(Pt 7):1877-90. doi: 10.1093/brain/aww083. Epub 2016 Apr 28. Brain. 2016. PMID: 27190025 Free PMC article. Review.
-
Dissociating Landmark Stability from Orienting Value Using Functional Magnetic Resonance Imaging.
Auger SD, Maguire EA. Auger SD, et al. J Cogn Neurosci. 2018 May;30(5):698-713. doi: 10.1162/jocn_a_01231. Epub 2018 Jan 8. J Cogn Neurosci. 2018. PMID: 29308982 Free PMC article.
-
George S, Rönnbäck A, Gouras GK, Petit GH, Grueninger F, Winblad B, Graff C, Brundin P. George S, et al. Acta Neuropathol Commun. 2024 Feb 14;12(1):26. doi: 10.1186/s40478-023-01712-9. Acta Neuropathol Commun. 2024. PMID: 38355705 Free PMC article. No abstract available.
-
Trans-Synaptic Spread of Amyloid-β in Alzheimer's Disease: Paths to β-Amyloidosis.
Pignataro A, Middei S. Pignataro A, et al. Neural Plast. 2017;2017:5281829. doi: 10.1155/2017/5281829. Epub 2017 Dec 24. Neural Plast. 2017. PMID: 29435372 Free PMC article. Review.
References
-
- Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci. 2013;2:9535–9540. doi: 10.1073/pnas.1301175110. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous