pubmed.ncbi.nlm.nih.gov

Mitoribosomal regulation of OXPHOS biogenesis in plants - PubMed

  • ️Wed Jan 01 2014

Review

Mitoribosomal regulation of OXPHOS biogenesis in plants

Hanna Janska et al. Front Plant Sci. 2014.

Abstract

The ribosome filter hypothesis posits that ribosomes are not simple non-selective translation machines but may also function as regulatory elements in protein synthesis. Recent data supporting ribosomal filtering come from plant mitochondria where it has been shown that translation of mitochondrial transcripts encoding components of oxidative phosphorylation complexes (OXPHOS) and of mitoribosomes can be differentially affected by alterations in mitoribosomes. The biogenesis of mitoribosome was perturbed by silencing of a gene encoding a small-subunit protein of the mitoribosome in Arabidopsis thaliana. As a consequence, the mitochondrial OXPHOS and ribosomal transcripts were both upregulated, but only the ribosomal proteins were oversynthesized, while the OXPHOS subunits were actually depleted. This finding implies that the heterogeneity of plant mitoribosomes found in vivo could contribute to the functional selectivity of translation under distinct conditions. Furthermore, global analysis indicates that biogenesis of OXPHOS complexes in plants can be regulated at different levels of mitochondrial and nuclear gene expression, however, the ultimate coordination of genome expression occurs at the complex assembly level.

Keywords: OXPHOS; coordination of gene expression; mitochondrial translation; mitoribosome; ribosome filter hypothesis; ribosome heterogeneity.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1

Heterogeneity of mitoribosomes differentially affects the translation of mitochondrial OXPHOS and ribosomal proteins (based on Kwaśniak et al., 2013). In rps10 protein synthesis is carried out by a heterogeneous population of mitoribosomes characterized by an excess of free LSU subunits and a portion of SSUs lacking the S10 protein (black asterisk). Decreased translation of OXPHOS in rps10 results mainly from the reduced number of ribosomes per mRNA, whereas increased translation of mitoribosomal proteins results from enhanced ribosomal loading and also increased ribosomal density. In consequence, OXPHOS proteins are depleted, whereas mitoribosomal proteins over-abundant in rps10 mitochondria compared to wild-type ones. The amount of proteins translated by mitoribosomes is represented by the size of the black bands.

Similar articles

  • Silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in arabidopsis mitochondria.

    Kwasniak M, Majewski P, Skibior R, Adamowicz A, Czarna M, Sliwinska E, Janska H. Kwasniak M, et al. Plant Cell. 2013 May;25(5):1855-67. doi: 10.1105/tpc.113.111294. Epub 2013 May 30. Plant Cell. 2013. PMID: 23723321 Free PMC article.

  • Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome.

    Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, Mountford HS, Pulman J, Zangarelli C, Rio M, Boddaert N, Assouline Z, Sherpa MD, Schadt EE, Houten SM, Byrnes J, McCormick EM, Zolkipli-Cunningham Z, Haude K, Zhang Z, Retterer K, Bai R, Calvo SE, Mootha VK, Christodoulou J, Rötig A, Filipovska A, Cristian I, Falk MJ, Metodiev MD, Thorburn DR. Lake NJ, et al. Am J Hum Genet. 2017 Aug 3;101(2):239-254. doi: 10.1016/j.ajhg.2017.07.005. Am J Hum Genet. 2017. PMID: 28777931 Free PMC article.

  • The Diseased Mitoribosome.

    Ferrari A, Del'Olio S, Barrientos A. Ferrari A, et al. FEBS Lett. 2021 Apr;595(8):1025-1061. doi: 10.1002/1873-3468.14024. Epub 2020 Dec 22. FEBS Lett. 2021. PMID: 33314036 Free PMC article. Review.

  • Mitoribosome Biogenesis.

    Conor Moran J, Del'Olio S, Choi A, Zhong H, Barrientos A. Conor Moran J, et al. Methods Mol Biol. 2023;2661:23-51. doi: 10.1007/978-1-0716-3171-3_3. Methods Mol Biol. 2023. PMID: 37166630 Free PMC article.

  • Role of GTPases in Driving Mitoribosome Assembly.

    Maiti P, Lavdovskaia E, Barrientos A, Richter-Dennerlein R. Maiti P, et al. Trends Cell Biol. 2021 Apr;31(4):284-297. doi: 10.1016/j.tcb.2020.12.008. Epub 2021 Jan 5. Trends Cell Biol. 2021. PMID: 33419649 Free PMC article. Review.

Cited by

References

    1. Binder S., Brennicke A. (2003). Gene expression in plant mitochondria: transcriptional and post-transcriptional control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358 181–189 10.1098/rstb.2002.1179 - DOI - PMC - PubMed
    1. Bonen L. (2004). “Translational machinery in plant organelles,” in Molecular Biology and Biotechnology of Plant Organelles eds Daniell H., Chase C. (Netherlands: Springer) 323–345 10.1007/978-1-4020-3166-3_12 - DOI
    1. Brygazov K., Vesper O., Moll I. (2013). Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr. Opin. Microbiol. 16 133–139 10.1016/j.mib.2013.01.009 - DOI - PMC - PubMed
    1. Choquet Y., Wollman F. A. (2002). Translational regulations as specific traits of chloroplast gene expression. FEBS Lett. 529 39–42 10.1016/S0014-5793(02)03260-X - DOI - PubMed
    1. Davies S. M., Rackham O., Shearwood A. M., Hamilton K. L., Narsai R., Whelan J., et al. (2009). Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett. 583 1853–1858 10.1016/j.febslet.2009.04.048 - DOI - PubMed

Publication types