Iridescent flowers? Contribution of surface structures to optical signaling - PubMed
. 2014 Jul;203(2):667-673.
doi: 10.1111/nph.12808. Epub 2014 Apr 9.
Affiliations
- PMID: 24713039
- DOI: 10.1111/nph.12808
Free article
Iridescent flowers? Contribution of surface structures to optical signaling
Casper J van der Kooi et al. New Phytol. 2014 Jul.
Free article
Abstract
The color of natural objects depends on how they are structured and pigmented. In flowers, both the surface structure of the petals and the pigments they contain determine coloration. The aim of the present study was to assess the contribution of structural coloration, including iridescence, to overall floral coloration. We studied the reflection characteristics of flower petals of various plant species with an imaging scatterometer, which allows direct visualization of the angle dependence of the reflected light in the hemisphere above the petal. To separate the light reflected by the flower surface from the light backscattered by the components inside (e.g. the vacuoles), we also investigated surface casts. A survey among angiosperms revealed three different types of floral surface structure, each with distinct reflections. Petals with a smooth and very flat surface had mirror-like reflections and petal surfaces with cones yielded diffuse reflections. Petals with striations yielded diffraction patterns when single cells were illuminated. The iridescent signal, however, vanished when illumination similar to that found in natural conditions was applied. Pigmentary rather than structural coloration determines the optical appearance of flowers. Therefore, the hypothesized signaling by flowers with striated surfaces to attract potential pollinators presently seems untenable.
Keywords: coloration; petal striations; plant-pollinator signaling; reflection; scatterometry.
© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Similar articles
-
How to colour a flower: on the optical principles of flower coloration.
van der Kooi CJ, Elzenga JT, Staal M, Stavenga DG. van der Kooi CJ, et al. Proc Biol Sci. 2016 May 11;283(1830):20160429. doi: 10.1098/rspb.2016.0429. Proc Biol Sci. 2016. PMID: 27170723 Free PMC article.
-
The flower of Hibiscus trionum is both visibly and measurably iridescent.
Vignolini S, Moyroud E, Hingant T, Banks H, Rudall PJ, Steiner U, Glover BJ. Vignolini S, et al. New Phytol. 2015 Jan;205(1):97-101. doi: 10.1111/nph.12958. Epub 2014 Jul 16. New Phytol. 2015. PMID: 25040014
-
Contributions of iridescence to floral patterning.
Whitney HM, Kolle M, Alvarez-Fernandez R, Steiner U, Glover BJ. Whitney HM, et al. Commun Integr Biol. 2009 May;2(3):230-2. doi: 10.4161/cib.2.3.8084. Commun Integr Biol. 2009. PMID: 19641739 Free PMC article.
-
Functional significance of the optical properties of flowers for visual signalling.
van der Kooi CJ, Dyer AG, Kevan PG, Lunau K. van der Kooi CJ, et al. Ann Bot. 2019 Jan 23;123(2):263-276. doi: 10.1093/aob/mcy119. Ann Bot. 2019. PMID: 29982325 Free PMC article. Review.
-
The physics of pollinator attraction.
Moyroud E, Glover BJ. Moyroud E, et al. New Phytol. 2017 Oct;216(2):350-354. doi: 10.1111/nph.14312. Epub 2016 Dec 4. New Phytol. 2017. PMID: 27915467 Review.
Cited by
-
Signal or cue: the role of structural colors in flower pollination.
Garcia JE, Shrestha M, Howard SR, Petersen P, Dyer AG. Garcia JE, et al. Curr Zool. 2019 Aug;65(4):467-481. doi: 10.1093/cz/zoy096. Epub 2018 Dec 13. Curr Zool. 2019. PMID: 31413719 Free PMC article.
-
Osmophores and petal surface traits in Bignonieae species.
Macedo KM, Tunes P, de Almeida Gonçalves L, Canaveze Y, Guimarães E, Machado SR. Macedo KM, et al. Naturwissenschaften. 2023 Sep 8;110(5):44. doi: 10.1007/s00114-023-01873-6. Naturwissenschaften. 2023. PMID: 37682350
-
Functional optics of glossy buttercup flowers.
van der Kooi CJ, Elzenga JT, Dijksterhuis J, Stavenga DG. van der Kooi CJ, et al. J R Soc Interface. 2017 Feb;14(127):20160933. doi: 10.1098/rsif.2016.0933. J R Soc Interface. 2017. PMID: 28228540 Free PMC article.
-
How to colour a flower: on the optical principles of flower coloration.
van der Kooi CJ, Elzenga JT, Staal M, Stavenga DG. van der Kooi CJ, et al. Proc Biol Sci. 2016 May 11;283(1830):20160429. doi: 10.1098/rspb.2016.0429. Proc Biol Sci. 2016. PMID: 27170723 Free PMC article.
-
Iridescence and hydrophobicity have no clear delineation that explains flower petal micro-surface.
Garcia JE, Shrestha M, Ospina-Rozo L, Dekiwadia C, Field MR, Ma JS, Tran N, Dyer AG, Fox K, Greentree AD. Garcia JE, et al. Sci Rep. 2020 Jun 30;10(1):10685. doi: 10.1038/s41598-020-67663-6. Sci Rep. 2020. PMID: 32606366 Free PMC article.
References
-
- Antoniou Kourounioti RL, Band LR, Fozard JA, Hampstead A, Lovrics A, Moyroud E, Vignolini S, King JR, Jenen OE, Glover BJ. 2013. Buckling as an origin of cuticular patterns, including diffraction gratings, in flower petals. Journal of the Royal Society, Interface 10: 20120847.
-
- Campbell DR, Bischoff M. 2013. Selection for a floral trait is not mediated by pollen receipt even though seed set in the population is pollen-limited. Functional Ecology 27: 1117-1125.
-
- Ellis AG, Johnson SD. 2009. The evolution of floral variation without pollinator shifts in Gorteria diffusa (Asteraceae). American Journal of Botany 96: 793-801.
-
- Fernandes SN, Geng Y, Vignolini S, Glover BJ, Trindade AC, Canejo JP, Almeida PL, Brogueira P, Godinho MH. 2013. Structural color and iridescence in transparent sheared cellulosic films. Macromolecular Chemistry and Physics 214: 25-32.
-
- Galen C. 1999. Why do flowers vary? BioScience 49: 631-640.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources