Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions - PubMed
- ️Wed Jan 01 2014
Modification of chitin with kraft lignin and development of new biosorbents for removal of cadmium(II) and nickel(II) ions
Marcin Wysokowski et al. Mar Drugs. 2014.
Abstract
Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry.
Figures

SEM images of (a) chitin; (b) kraft lignin; chitin/lignin materials labeled as (c) ChL 1; (d) ChL 4; (e) ChL 7 at different magnifications.

FT-IR analysis of precursors (a) and selected chitin/lignin materials (b).

(a) XPS C 1s spectra for chitin, kraft lignin and ChL 1 samples. The assignment of components C1–C4 is described in the text; (b) XPS N 1s spectra for chitin and ChL 1.

13C CP MAS NMR spectra of chitin, lignin, and ChL 1 material.

TG/DTA analysis of chitin and kraft lignin (a) and three selected chitin/lignin materials (b).

Nitrogen adsorption/desorption isotherms and porous structure parameters for chitin (a); kraft lignin (b); and the chitin/lignin material labeled as ChL 1 (c).

Effect of contact time on (a) nickel(II); (b) cadmium(II) removal by chitin, kraft lignin and chitin/lignin biosorbent; (c) influence of quantity of chitin/lignin material on nickel(II) and cadmium(II) removal efficiency (pH = 7 and temperature 25 °C).
Similar articles
-
Li C, Champagne P. Li C, et al. J Hazard Mater. 2009 Nov 15;171(1-3):872-8. doi: 10.1016/j.jhazmat.2009.06.084. Epub 2009 Jun 23. J Hazard Mater. 2009. PMID: 19608338
-
Bartczak P, Klapiszewski Ł, Wysokowski M, Majchrzak I, Czernicka W, Piasecki A, Ehrlich H, Jesionowski T. Bartczak P, et al. J Environ Manage. 2017 Dec 15;204(Pt 1):300-310. doi: 10.1016/j.jenvman.2017.08.059. Epub 2017 Sep 9. J Environ Manage. 2017. PMID: 28898751
-
Mohan D, Pittman CU Jr, Steele PH. Mohan D, et al. J Colloid Interface Sci. 2006 May 15;297(2):489-504. doi: 10.1016/j.jcis.2005.11.023. Epub 2005 Dec 20. J Colloid Interface Sci. 2006. PMID: 16375914
-
Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water.
Tran VS, Ngo HH, Guo W, Zhang J, Liang S, Ton-That C, Zhang X. Tran VS, et al. Bioresour Technol. 2015 Apr;182:353-363. doi: 10.1016/j.biortech.2015.02.003. Epub 2015 Feb 8. Bioresour Technol. 2015. PMID: 25690682 Review.
-
Adsorptive removal of nickel(II) ions from aqueous environment: A review.
Raval NP, Shah PU, Shah NK. Raval NP, et al. J Environ Manage. 2016 Sep 1;179:1-20. doi: 10.1016/j.jenvman.2016.04.045. Epub 2016 May 3. J Environ Manage. 2016. PMID: 27149285 Review.
Cited by
-
Lignin-Based Hybrid Admixtures and their Role in Cement Composite Fabrication.
Klapiszewski Ł, Klapiszewska I, Ślosarczyk A, Jesionowski T. Klapiszewski Ł, et al. Molecules. 2019 Sep 30;24(19):3544. doi: 10.3390/molecules24193544. Molecules. 2019. PMID: 31574985 Free PMC article.
-
Ying W, Shi Z, Yang H, Xu G, Zheng Z, Yang J. Ying W, et al. Biotechnol Biofuels. 2018 Aug 1;11:214. doi: 10.1186/s13068-018-1217-6. eCollection 2018. Biotechnol Biofuels. 2018. PMID: 30083227 Free PMC article.
-
Solís-Cruz B, Hernández-Patlán D, Beyssac E, Latorre JD, Hernandez-Velasco X, Merino-Guzman R, Tellez G, López-Arellano R. Solís-Cruz B, et al. Polymers (Basel). 2017 Oct 19;9(10):529. doi: 10.3390/polym9100529. Polymers (Basel). 2017. PMID: 30965830 Free PMC article.
-
Budnyak TM, Yanovska ES, Kichkiruk OY, Sternik D, Tertykh VA. Budnyak TM, et al. Nanoscale Res Lett. 2016 Dec;11(1):492. doi: 10.1186/s11671-016-1696-y. Epub 2016 Nov 8. Nanoscale Res Lett. 2016. PMID: 27826951 Free PMC article.
-
Zdarta J, Wysokowski M, Norman M, Kołodziejczak-Radzimska A, Moszyński D, Maciejewski H, Ehrlich H, Jesionowski T. Zdarta J, et al. Int J Mol Sci. 2016 Sep 20;17(9):1581. doi: 10.3390/ijms17091581. Int J Mol Sci. 2016. PMID: 27657054 Free PMC article.
References
-
- Gładysz-Płaska A., Majdan M., Pikus S., Sternik D. Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. Chem. Eng. J. 2012;179:140–150. doi: 10.1016/j.cej.2011.10.071. - DOI
-
- Ashrafa M.A., Rehmanb M.A., Aliasa Y., Yusof I. Removal of Cd(II) onto Raphanussativus peels biomass: Equilibrium, kinetics, and thermodynamics. Desalination Water Treat. 2013;51:4402–4412.
-
- Dhir B., Srivastava S. Heavy metal removal from a multi-metal solution and wastewater by Salvinianatans. Ecol. Eng. 2011;37:893–896. doi: 10.1016/j.ecoleng.2011.01.007. - DOI
-
- Jiang M., Jin X., Lu X., Chen Z. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination. 2010;252:33–39. doi: 10.1016/j.desal.2009.11.005. - DOI
-
- León-Torres A., Cuerda-Correa E.M., Fernández-González C., Gómez-Serrano V. On the use of a natural peat for the removal of Cr(VI) from aqueous solutions. J. Colloid Interface Sci. 2012;15:325–332. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources