Unveiling cell surface and type IV secretion proteins responsible for archaeal rudivirus entry - PubMed
- ️Wed Jan 01 2014
Unveiling cell surface and type IV secretion proteins responsible for archaeal rudivirus entry
Ling Deng et al. J Virol. 2014.
Abstract
Sulfolobus mutants resistant to archaeal lytic virus Sulfolobus islandicus rod-shaped virus 2 (SIRV2) were isolated, and mutations were identified in two gene clusters, cluster sso3138 to sso3141 and cluster sso2386 and sso2387, encoding cell surface and type IV secretion proteins, respectively. The involvement of the mutations in the resistance was confirmed by genetic complementation. Blocking of virus entry into the mutants was demonstrated by the lack of early gene transcription, strongly supporting the idea of a role of the proteins in SIRV2 entry.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Figures
![FIG 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b246/4136359/be791dd33c05/zjv9990994380001.gif)
(A) Growth retardation of S. solfataricus 5E6 upon SIRV2 infection. (B) Resistance of S. solfataricus 5E6R to SIRV2. OD600, optical density at 600 nm.
![FIG 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b246/4136359/34d63a392a37/zjv9990994380002.gif)
Analysis of the pyrEF mutants derived from S. solfataricus 5E6. (A) Types and insertion sites of transposons inserted in the pyrEF gene region of different pyrEF mutants. (B) PCR amplification of the pyrEF region from Sens1 to Sens10 and from Res1 to Res10. wt, wild type.
![FIG 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b246/4136359/2200ac711667/zjv9990994380003.gif)
Different mutations in the SIRV2-resistant strains and their stability. (A) Transposon insertions in sso3139 and sso3140. (B) Mutations in sso2386 and sso2387. (C) PCR amplification of the mutation region from different resistant strains.
![FIG 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b246/4136359/5845154ef189/zjv9990994380004.gif)
Cluster sso3138 to sso3141 and cluster sso2386 and sso2387 are involved in SIRV2 entry. (A) Growth retardation of sso3139-complemented Res1 upon SIRV2 infection. Res1 (pEXA), Res1 transformed with expression vector pEXA; Res1 (pEXA3139), Res1 transformed with expression vector pEXA containing sso3139. (B) Growth retardation of sso2386-and-sso2387-complemented Res1B upon SIRV2 infection. Res1B (pEXA), Res1B transformed with expression vector pEXA; Res1B (pEXA2386–2387), Res1B transformed with expression vector pEXA containing sso2386 and sso2387. (C and D) Visualization of SIRV2 DNA replication in Res1 (C) and Res1B (D) transformants infected with SIRV2. Plasmid constructs contained in the transformants are labeled on top of each lane, and the sampling time p.i. is indicated as hours. L and R designate the left and right terminal fragments, respectively, after a double digestion with BamHI and HindIII (see panel E). (E) Schematic presentation of SIRV2 genomic map and the formation of terminal duplex replicative intermediates (2L and 2R), as described previously (12). The locations of the probe (filled rectangle) in the termini are indicated. ITR, inverted terminal repeat. (F) RT-PCR amplification of sso0446 (tfb-1) (left panel) and SIRV2 ORF131a transcript fragments (right panel). “+” and “−” indicate the presence and absence of reverse transcriptase (RT), respectively.
Similar articles
-
Martínez-Alvarez L, Deng L, Peng X. Martínez-Alvarez L, et al. J Virol. 2017 Jun 9;91(13):e00486-17. doi: 10.1128/JVI.00486-17. Print 2017 Jul 1. J Virol. 2017. PMID: 28424282 Free PMC article.
-
Gardner AF, Bell SD, White MF, Prangishvili D, Krupovic M. Gardner AF, et al. J Virol. 2014 Jun;88(12):7105-8. doi: 10.1128/JVI.00636-14. Epub 2014 Apr 2. J Virol. 2014. PMID: 24696494 Free PMC article.
-
First insights into the entry process of hyperthermophilic archaeal viruses.
Quemin ER, Lucas S, Daum B, Quax TE, Kühlbrandt W, Forterre P, Albers SV, Prangishvili D, Krupovic M. Quemin ER, et al. J Virol. 2013 Dec;87(24):13379-85. doi: 10.1128/JVI.02742-13. Epub 2013 Oct 2. J Virol. 2013. PMID: 24089554 Free PMC article.
-
Genomics and biology of Rudiviruses, a model for the study of virus-host interactions in Archaea.
Prangishvili D, Koonin EV, Krupovic M. Prangishvili D, et al. Biochem Soc Trans. 2013 Feb 1;41(1):443-50. doi: 10.1042/BST20120313. Biochem Soc Trans. 2013. PMID: 23356326 Free PMC article. Review.
-
Anti-CRISPR Proteins in Archaea.
Peng X, Mayo-Muñoz D, Bhoobalan-Chitty Y, Martínez-Álvarez L. Peng X, et al. Trends Microbiol. 2020 Nov;28(11):913-921. doi: 10.1016/j.tim.2020.05.007. Epub 2020 Jun 1. Trends Microbiol. 2020. PMID: 32499102 Review.
Cited by
-
Jørgensen J, Sundell K, Castillo D, Dramshøj LS, Jørgensen NB, Madsen SB, Landor L, Wiklund T, Donati VL, Madsen L, Dalsgaard I, Middelboe M. Jørgensen J, et al. Environ Microbiol. 2022 Oct;24(10):4915-4930. doi: 10.1111/1462-2920.16126. Epub 2022 Aug 4. Environ Microbiol. 2022. PMID: 35837851 Free PMC article.
-
Archaeal viruses at the cell envelope: entry and egress.
Quemin ER, Quax TE. Quemin ER, et al. Front Microbiol. 2015 Jun 5;6:552. doi: 10.3389/fmicb.2015.00552. eCollection 2015. Front Microbiol. 2015. PMID: 26097469 Free PMC article. Review.
-
Differentiation and Structure in Sulfolobus islandicus Rod-Shaped Virus Populations.
Bautista MA, Black JA, Youngblut ND, Whitaker RJ. Bautista MA, et al. Viruses. 2017 May 19;9(5):120. doi: 10.3390/v9050120. Viruses. 2017. PMID: 28534836 Free PMC article.
-
A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea.
Liu Y, Ishino S, Ishino Y, Pehau-Arnaudet G, Krupovic M, Prangishvili D. Liu Y, et al. J Virol. 2017 Jun 9;91(13):e00589-17. doi: 10.1128/JVI.00589-17. Print 2017 Jul 1. J Virol. 2017. PMID: 28424284 Free PMC article.
-
Viral Hijack of Filamentous Surface Structures in Archaea and Bacteria.
Tittes C, Schwarzer S, Quax TEF. Tittes C, et al. Viruses. 2021 Jan 22;13(2):164. doi: 10.3390/v13020164. Viruses. 2021. PMID: 33499367 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources