Inferring ancestry from population genomic data and its applications - PubMed
- ️Wed Jan 01 2014
Review
Inferring ancestry from population genomic data and its applications
Badri Padhukasahasram. Front Genet. 2014.
Abstract
Ancestry inference is a frequently encountered problem and has many applications such as forensic analyses, genetic association studies, and personal genomics. The main goal of ancestry inference is to identify an individual's population of origin based on our knowledge of natural populations. Because both self-reported ancestry in humans or the sampling location of an organism can be inaccurate for this purpose, the use of genetic markers can facilitate accurate and reliable inference of an individual's ancestral origins. At a higher level, there are two different paradigms in ancestry inference: global ancestry inference which tries to compute the genome-wide average of the population contributions and local ancestry inference which tries to identify the regional ancestry of a genomic segment. In this mini review, I describe the numerous approaches that are currently available for both kinds of ancestry inference from population genomic datasets. I first describe the general ideas underlying such inference methods and their relationship to one another. Then, I describe practical applications in which inference of ancestry has proven useful. Lastly, I discuss challenges and directions for future research work in this area.
Keywords: Bayesian inference; global ancestry; hidden Markov models; local ancestry; maximum likelihood estimation.
Similar articles
-
Bansal V, Libiger O. Bansal V, et al. BMC Bioinformatics. 2015 Jan 16;16:4. doi: 10.1186/s12859-014-0418-7. BMC Bioinformatics. 2015. PMID: 25592880 Free PMC article.
-
A general approach for inferring the ancestry of recent ancestors of an admixed individual.
Zhang Y, Zhang H, Wu Y. Zhang Y, et al. Proc Natl Acad Sci U S A. 2024 Jan 9;121(2):e2316242120. doi: 10.1073/pnas.2316242120. Epub 2024 Jan 2. Proc Natl Acad Sci U S A. 2024. PMID: 38165936 Free PMC article.
-
Nievergelt CM, Maihofer AX, Shekhtman T, Libiger O, Wang X, Kidd KK, Kidd JR. Nievergelt CM, et al. Investig Genet. 2013 Jul 1;4(1):13. doi: 10.1186/2041-2223-4-13. Investig Genet. 2013. PMID: 23815888 Free PMC article.
-
[Progress on Molecular Biology for Forensic Ancestry Inference].
Sun K, Hou YP. Sun K, et al. Fa Yi Xue Za Zhi. 2018 Jun;34(3):286-293. doi: 10.12116/j.issn.1004-5619.2018.03.014. Epub 2018 Jun 25. Fa Yi Xue Za Zhi. 2018. PMID: 30051669 Review. Chinese.
Cited by
-
Semi-Supervised Clustering of Sparse Graphs: Crossing the Information-Theoretic Threshold.
Sheng J, Strohmer T. Sheng J, et al. J Mach Learn. 2024;3(1):64-106. doi: 10.4208/jml.230624. J Mach Learn. 2024. PMID: 39493625 Free PMC article.
-
Hernandez-Pacheco N, Flores C, Oh SS, Burchard EG, Pino-Yanes M. Hernandez-Pacheco N, et al. Curr Allergy Asthma Rep. 2016 Jul;16(8):53. doi: 10.1007/s11882-016-0635-4. Curr Allergy Asthma Rep. 2016. PMID: 27393700 Review.
-
Systematic Review on Local Ancestor Inference From a Mathematical and Algorithmic Perspective.
Wu J, Liu Y, Zhao Y. Wu J, et al. Front Genet. 2021 May 24;12:639877. doi: 10.3389/fgene.2021.639877. eCollection 2021. Front Genet. 2021. PMID: 34108987 Free PMC article. Review.
-
Jin Y, Schaffer AA, Feolo M, Holmes JB, Kattman BL. Jin Y, et al. G3 (Bethesda). 2019 Aug 8;9(8):2447-2461. doi: 10.1534/g3.118.200925. G3 (Bethesda). 2019. PMID: 31151998 Free PMC article.
-
Vi T, Vigouroux Y, Cubry P, Marraccini P, Phan HV, Khong GN, Poncet V. Vi T, et al. Genome Biol Evol. 2023 May 5;15(5):evad065. doi: 10.1093/gbe/evad065. Genome Biol Evol. 2023. PMID: 37079743 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources