Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa - PubMed
Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa
Thomas Cavalier-Smith et al. Mol Phylogenet Evol. 2014 Dec.
Free article
Abstract
Animals and fungi independently evolved from the protozoan phylum Choanozoa, these three groups constituting a major branch of the eukaryotic evolutionary tree known as opisthokonts. Opisthokonts and the protozoan phylum Amoebozoa (amoebae plus slime moulds) were previously argued to have evolved independently from the little-studied, largely flagellate, protozoan phylum, Sulcozoa. Sulcozoa are a likely evolutionary link between opisthokonts and the more primitive excavate flagellates that have ventral feeding grooves and the most primitive known mitochondria. To extend earlier sparse evidence for the ancestral (paraphyletic) nature of Sulcozoa, we sequenced transcriptomes from six gliding flagellates (two apusomonads; three planomonads; Mantamonas). Phylogenetic analyses of 173-192 genes and 73-122 eukaryote-wide taxa show Sulcozoa as deeply paraphyletic, confirming that opisthokonts and Amoebozoa independently evolved from sulcozoans by losing their ancestral ventral groove and dorsal pellicle: Apusozoa (apusomonads plus anaerobic breviate amoebae) are robustly sisters to opisthokonts and probably paraphyletic, breviates diverging before apusomonads; Varisulca (planomonads, Mantamonas, and non-gliding flagellate Collodictyon) are sisters to opisthokonts plus Apusozoa and Amoebozoa, and possibly holophyletic; Glissodiscea (planomonads, Mantamonas) may be holophyletic, but Mantamonas sometimes groups with Collodictyon instead. Taxon and gene sampling slightly affects tree topology; for the closest branches in Sulcozoa and opisthokonts, proportionally reducing missing data eliminates conflicts between homogeneous-model maximum-likelihood trees and evolutionarily more realistic site-heterogeneous trees. Sulcozoa, opisthokonts, and Amoebozoa constitute an often-pseudopodial 'podiate' clade, one of only three eukaryotic 'supergroups'. Our trees indicate that evolution of sulcozoan dorsal pellicle, ventral pseudopodia, and ciliary gliding (probably simultaneously) generated podiate eukaryotes from Malawimonas-like excavate flagellates.
Keywords: Cell evolution; Eukaryote phylogeny; Podiates; Protozoa; Sulcozoa; Transcriptome sequencing.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Cavalier-Smith T. Cavalier-Smith T. Eur J Protistol. 2013 May;49(2):115-78. doi: 10.1016/j.ejop.2012.06.001. Epub 2012 Oct 22. Eur J Protistol. 2013. PMID: 23085100 Review.
-
Phylogeny of choanozoa, apusozoa, and other protozoa and early eukaryote megaevolution.
Cavalier-Smith T, Chao EE. Cavalier-Smith T, et al. J Mol Evol. 2003 May;56(5):540-63. doi: 10.1007/s00239-002-2424-z. J Mol Evol. 2003. PMID: 12698292
-
Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics.
Zhao S, Shalchian-Tabrizi K, Klaveness D. Zhao S, et al. Mol Phylogenet Evol. 2013 Dec;69(3):462-8. doi: 10.1016/j.ympev.2013.08.005. Epub 2013 Aug 22. Mol Phylogenet Evol. 2013. PMID: 23973893
-
Multigene phylogeny resolves deep branching of Amoebozoa.
Cavalier-Smith T, Fiore-Donno AM, Chao E, Kudryavtsev A, Berney C, Snell EA, Lewis R. Cavalier-Smith T, et al. Mol Phylogenet Evol. 2015 Feb;83:293-304. doi: 10.1016/j.ympev.2014.08.011. Epub 2014 Aug 20. Mol Phylogenet Evol. 2015. PMID: 25150787
-
The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
Cavalier-Smith T. Cavalier-Smith T. Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354. doi: 10.1099/00207713-52-2-297. Int J Syst Evol Microbiol. 2002. PMID: 11931142 Review.
Cited by
-
Cavalier-Smith T. Cavalier-Smith T. Protoplasma. 2018 Jan;255(1):297-357. doi: 10.1007/s00709-017-1147-3. Epub 2017 Sep 5. Protoplasma. 2018. PMID: 28875267 Free PMC article.
-
They shall not grow mold: Soldiers of innate and adaptive immunity to fungi.
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. Woodring T, et al. Semin Immunol. 2023 Jan;65:101673. doi: 10.1016/j.smim.2022.101673. Epub 2022 Nov 29. Semin Immunol. 2023. PMID: 36459927 Free PMC article. Review.
-
Plant telomere biology: The green solution to the end-replication problem.
Shakirov EV, Chen JJ, Shippen DE. Shakirov EV, et al. Plant Cell. 2022 Jul 4;34(7):2492-2504. doi: 10.1093/plcell/koac122. Plant Cell. 2022. PMID: 35511166 Free PMC article.
-
Caleosin/peroxygenases: multifunctional proteins in plants.
Hanano A, Blée E, Murphy DJ. Hanano A, et al. Ann Bot. 2023 Apr 4;131(3):387-409. doi: 10.1093/aob/mcad001. Ann Bot. 2023. PMID: 36656070 Free PMC article. Review.
-
A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure.
Wideman JG, Lax G, Leonard G, Milner DS, Rodríguez-Martínez R, Simpson AGB, Richards TA. Wideman JG, et al. Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190100. doi: 10.1098/rstb.2019.0100. Epub 2019 Oct 7. Philos Trans R Soc Lond B Biol Sci. 2019. PMID: 31587636 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources