Insights into conifer giga-genomes - PubMed
Review
. 2014 Dec;166(4):1724-32.
doi: 10.1104/pp.114.248708. Epub 2014 Oct 27.
Inanc Birol 1 , Jean Bousquet 1 , Pär K Ingvarsson 1 , Stefan Jansson 1 , Steven J M Jones 1 , Christopher I Keeling 1 , John MacKay 1 , Ove Nilsson 1 , Kermit Ritland 1 , Nathaniel Street 1 , Alvin Yanchuk 1 , Philipp Zerbe 1 , Jörg Bohlmann 2
Affiliations
- PMID: 25349325
- PMCID: PMC4256843
- DOI: 10.1104/pp.114.248708
Review
Insights into conifer giga-genomes
Amanda R De La Torre et al. Plant Physiol. 2014 Dec.
Abstract
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes.
© 2014 American Society of Plant Biologists. All Rights Reserved.
Figures

Size and assembly of conifer genomes compared with other plant genomes. Genome size is plotted against the number of scaffolds divided by the haploid chromosome number for a range of plant species. As such, an assembly that reconstructs a genome with perfect contiguity will have a value of 1, and values greater than 1 represent increasing genome fragmentation. Genome assemblies that utilized Sanger sequencing either in full or in part are represented as white circles. Assemblies constructed using only next generation sequencing technologies are represented as black circles. Both axes are plotted on a log10 scale. With the exception of Populus tremula, Hordeum vulgare, and the three conifer genomes, all genomes were obtained from the Phytozome resource (version 10;
http://phytozome.jgi.doe.gov/). The early release draft assembly of P. tremula was obtained from the PopGenIE.org FTP resource (
ftp://popgenie.org/popgenie/UPSC_genomes/UPSC_Draft_Assemblies/Current/Genome/) and H. vulgare ‘Morex’ from the Munich Information Center for Protein Sequences barley genome database FTP resource (
ftp://ftpmips.helmholtz-muenchen.de/plants/barley/public_data/sequences/). The conifer genomes are detailed by Birol et al. (2013), Nystedt et al. (2013), and Zimin et al. (2014).
Similar articles
-
Ralph SG, Chun HJ, Kolosova N, Cooper D, Oddy C, Ritland CE, Kirkpatrick R, Moore R, Barber S, Holt RA, Jones SJ, Marra MA, Douglas CJ, Ritland K, Bohlmann J. Ralph SG, et al. BMC Genomics. 2008 Oct 14;9:484. doi: 10.1186/1471-2164-9-484. BMC Genomics. 2008. PMID: 18854048 Free PMC article.
-
Hamberger B, Bohlmann J. Hamberger B, et al. Biochem Soc Trans. 2006 Dec;34(Pt 6):1209-14. doi: 10.1042/BST0341209. Biochem Soc Trans. 2006. PMID: 17073787
-
Exome capture from the spruce and pine giga-genomes.
Suren H, Hodgins KA, Yeaman S, Nurkowski KA, Smets P, Rieseberg LH, Aitken SN, Holliday JA. Suren H, et al. Mol Ecol Resour. 2016 Sep;16(5):1136-46. doi: 10.1111/1755-0998.12570. Epub 2016 Aug 5. Mol Ecol Resour. 2016. PMID: 27428061
-
Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter MA. Trontin JF, et al. Methods Mol Biol. 2016;1359:167-207. doi: 10.1007/978-1-4939-3061-6_8. Methods Mol Biol. 2016. PMID: 26619863 Review.
-
Towards decoding the conifer giga-genome.
Mackay J, Dean JF, Plomion C, Peterson DG, Cánovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MÁ, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera MT. Mackay J, et al. Plant Mol Biol. 2012 Dec;80(6):555-69. doi: 10.1007/s11103-012-9961-7. Epub 2012 Sep 9. Plant Mol Biol. 2012. PMID: 22960864 Review.
Cited by
-
Van Ghelder C, Parent GJ, Rigault P, Prunier J, Giguère I, Caron S, Stival Sena J, Deslauriers A, Bousquet J, Esmenjaud D, MacKay J. Van Ghelder C, et al. Sci Rep. 2019 Aug 12;9(1):11614. doi: 10.1038/s41598-019-47950-7. Sci Rep. 2019. PMID: 31406137 Free PMC article.
-
Functional and morphological evolution in gymnosperms: A portrait of implicated gene families.
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. De La Torre AR, et al. Evol Appl. 2019 Jul 21;13(1):210-227. doi: 10.1111/eva.12839. eCollection 2020 Jan. Evol Appl. 2019. PMID: 31892953 Free PMC article.
-
Azaiez A, Pavy N, Gérardi S, Laroche J, Boyle B, Gagnon F, Mottet MJ, Beaulieu J, Bousquet J. Azaiez A, et al. BMC Genomics. 2018 Dec 17;19(1):942. doi: 10.1186/s12864-018-5247-z. BMC Genomics. 2018. PMID: 30558528 Free PMC article.
-
Cervantes S, Kesälahti R, Kumpula TA, Mattila TM, Helanterä H, Pyhäjärvi T. Cervantes S, et al. Mol Biol Evol. 2023 Aug 3;40(8):msad183. doi: 10.1093/molbev/msad183. Mol Biol Evol. 2023. PMID: 37565532 Free PMC article.
-
Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution.
Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Mudd AB, et al. Commun Biol. 2020 Sep 1;3(1):480. doi: 10.1038/s42003-020-1096-9. Commun Biol. 2020. PMID: 32873878 Free PMC article.
References
-
- Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342: 1241089. - PubMed
-
- Armenise L, Simeone M, Piredda R, Schirone B (2012) Validation of DNA barcoding as an efficient tool for taxon identification and detection of species diversity in Italian conifers. Eur J For Res 131: 1337–1353
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous