GABAergic mechanisms of hippocampal hyperactivity in schizophrenia - PubMed
Review
GABAergic mechanisms of hippocampal hyperactivity in schizophrenia
Stephan Heckers et al. Schizophr Res. 2015 Sep.
Abstract
Schizophrenia is associated with abnormalities of hippocampal structure and function. Neuroimaging studies have shown that the hippocampus is hyperactive in schizophrenia. Here we explore GABAergic mechanisms of this hippocampal hyperactivity. The initial evidence for GABAergic abnormalities of the hippocampus in schizophrenia came from post-mortem studies of interneuron number, protein expression, and gene expression. These studies revealed marked decreases in gene and protein expression of somatostatin-positive and parvalbumin-positive interneurons, and indicated reduced interneuron numbers. Animal studies of decreased parvalbumin and NMDA-receptor function have shown that selective abnormalities of hippocampal interneurons mimic some of the cognitive deficits and clinical features of schizophrenia. The post-mortem and animal studies are consistent with the neuroimaging finding of increased hippocampal activity in schizophrenia, which can explain some of the psychotic symptoms and cognitive deficits. Taken together, these findings may guide the development of biomarkers and the development of new treatments for psychosis.
Keywords: GABA; Hippocampus; Neuroimaging; Schizophrenia.
Copyright © 2014 Elsevier B.V. All rights reserved.
Conflict of interest statement
Conflict of Interest
Dr. Heckers has received funding from the National Institute of Mental Health.
Figures

The photomicrographs show the cell bodies, axon and dendrites of parvalbumin-positive (left column) and somatostatin-positive (middle column) neurons in subfield CA1 of the human hippocampus, next to a schematic depiction of the position of subcellular components of pyramidal cells (right column; modified from (Spruston, 2008)). Cell somata of both interneuron populations are dispersed throughout the pyramidal cell layer. Parvalbumin-positive neurons have large somata and a high density of neurites throughout the pyramidal cell layer. A lesser density of neurites is seen in the stratum radiatum, with increasing density toward the stratum lacunosum. In contrast, somatostatin-positive neurons have smaller somata. In CA1, a group of these neurons is aligned at the border to the stratum oriens. Faint somatostatin-positive projections are seen in the pyramidal cell layer, but the highest density of neurites is seen in stratum moleculare. All scale bars = 100 μm.

Panel A. The majority of neurons in the human hippocampus are large, excitatory (glutamatergic) pyramidal cells. Pyramidal cells are surrounded by local interneurons that can inhibit their firing pattern at various subcellular sites. Somatostatin-positive interneurons inhibit the distal dendrites in the stratum moleculare (apical tuft; orange column on the left). In contrast, parvalbumin-positive interneurons modulate pyramidal cells at more proximal dendrites and the cell body (panel A, green column on the right). Panel B. Somatostatin-positive interneurons control information flow arriving from the entorhinal cortex. Proximal apical dendrites in CA1 receive input primarily from CA3. Thus, parvalbumin neurons control pyramidal cell activity originating from both extrahippocampal and intrahippocampal sources. Panel C. A loss of somatostatin neuron activity will lead to a disinhibition of the input from the entorhinal cortex. Panel D. A loss of parvalbumin neurons will lead to asynchronous firing of pyramidal cells and increased excitatory drive from the hippocampus.
Similar articles
-
Hippocampal neurons in schizophrenia.
Heckers S, Konradi C. Heckers S, et al. J Neural Transm (Vienna). 2002 May;109(5-6):891-905. doi: 10.1007/s007020200073. J Neural Transm (Vienna). 2002. PMID: 12111476 Free PMC article. Review.
-
Braun I, Genius J, Grunze H, Bender A, Möller HJ, Rujescu D. Braun I, et al. Schizophr Res. 2007 Dec;97(1-3):254-63. doi: 10.1016/j.schres.2007.05.005. Epub 2007 Jun 29. Schizophr Res. 2007. PMID: 17601703
-
Nguyen R, Morrissey MD, Mahadevan V, Cajanding JD, Woodin MA, Yeomans JS, Takehara-Nishiuchi K, Kim JC. Nguyen R, et al. J Neurosci. 2014 Nov 5;34(45):14948-60. doi: 10.1523/JNEUROSCI.2204-14.2014. J Neurosci. 2014. PMID: 25378161 Free PMC article.
-
GABA abnormalities in schizophrenia: a methodological review of in vivo studies.
Taylor SF, Tso IF. Taylor SF, et al. Schizophr Res. 2015 Sep;167(1-3):84-90. doi: 10.1016/j.schres.2014.10.011. Epub 2014 Oct 25. Schizophr Res. 2015. PMID: 25458856 Free PMC article. Review.
-
Lin H, Hsu FC, Baumann BH, Coulter DA, Anderson SA, Lynch DR. Lin H, et al. Mol Cell Neurosci. 2014 Jul;61:163-75. doi: 10.1016/j.mcn.2014.06.007. Epub 2014 Jun 28. Mol Cell Neurosci. 2014. PMID: 24983521 Free PMC article.
Cited by
-
Kraguljac NV, Frölich MA, Tran S, White DM, Nichols N, Barton-McArdle A, Reid MA, Bolding MS, Lahti AC. Kraguljac NV, et al. Mol Psychiatry. 2017 Apr;22(4):562-569. doi: 10.1038/mp.2016.122. Epub 2016 Aug 2. Mol Psychiatry. 2017. PMID: 27480494 Free PMC article.
-
Hyperactivity and Reduced Activation of Anterior Hippocampus in Early Psychosis.
McHugo M, Talati P, Armstrong K, Vandekar SN, Blackford JU, Woodward ND, Heckers S. McHugo M, et al. Am J Psychiatry. 2019 Dec 1;176(12):1030-1038. doi: 10.1176/appi.ajp.2019.19020151. Epub 2019 Oct 18. Am J Psychiatry. 2019. PMID: 31623459 Free PMC article.
-
Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention.
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Godoy LD, et al. Front Integr Neurosci. 2022 Feb 17;16:765324. doi: 10.3389/fnint.2022.765324. eCollection 2022. Front Integr Neurosci. 2022. PMID: 35250498 Free PMC article. Review.
-
Memory and cognition in schizophrenia.
Guo JY, Ragland JD, Carter CS. Guo JY, et al. Mol Psychiatry. 2019 May;24(5):633-642. doi: 10.1038/s41380-018-0231-1. Epub 2018 Sep 21. Mol Psychiatry. 2019. PMID: 30242229 Free PMC article. Review.
-
Nenadić I, Meller T, Evermann U, Pfarr JK, Federspiel A, Walther S, Grezellschak S, Abu-Akel A. Nenadić I, et al. Mol Psychiatry. 2024 Jan;29(1):74-84. doi: 10.1038/s41380-023-02302-w. Epub 2023 Oct 27. Mol Psychiatry. 2024. PMID: 37891246 Free PMC article.
References
-
- Achim AM, Bertrand MC, Sutton H, Montoya A, Czechowska Y, Malla AK, Joober R, Pruessner JC, Lepage M. Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Arch Gen Psychiatry. 2007;64(9):999–1014. - PubMed
-
- Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature reviews Neuroscience. 2007;8(1):45–56. - PubMed
-
- Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318(5856):1645–1647. - PubMed
-
- Benes FM. Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry. 1999;46(5):589–599. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical