Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond - PubMed
Review
Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond
Rasika Mundade et al. Cell Cycle. 2014.
Abstract
Many biologically significant processes, such as cell differentiation and cell cycle progression, gene transcription and DNA replication, chromosome stability and epigenetic silencing etc. depend on the crucial interactions between cellular proteins and DNA. Chromatin immunoprecipitation (ChIP) is an important experimental technique for studying interactions between specific proteins and DNA in the cell and determining their localization on a specific genomic locus. In recent years, the combination of ChIP with second generation DNA-sequencing technology (ChIP-seq) allows precise genomic functional assay. This review addresses the important applications of ChIP-seq with an emphasis on its role in genome-wide mapping of transcription factor binding sites, the revelation of underlying molecular mechanisms of differential gene regulation that are governed by specific transcription factors, and the identification of epigenetic marks. Furthermore, we also describe the ChIP-seq data analysis workflow and a perspective for the exciting potential advancement of ChIP-seq technology in the future.
Keywords: AR; Burrows-Wheeler aligner; C. elegans; Caenorhabditis elegans; ChIP; ChIP sequencing; DNA; ChIP-seq processing pipeline; STAT; Model Organism ENCyclopedia Of DNA Elements; NF-κB; University of California Santa Cruz; UV; androgen receptor; BWA; c-Jun NH2-terminal kinase; K; chromatin; chromatin immunoprecipitation; CRs; chromatin regulators; ChIP-seq; deoxyribonuclease; EMSA; deoxyribonucleic acid; DNase; electrophoresis mobility shift assay; ENCODE; encyclopedia of DNA elements; FDR; false discovery rate; GR; glucocorticoid receptor; HDAC; haematopoietic stem progenitor cells; HM; high throughput; high throughput ChIP; IL-β; histone deacetylase; HEK; histone modification; HTChIP; human embryonic kidney; HSPCs; immunoprecipitation; interferon; JNK; interleukin β; IFN; lysine; MACS; model-based analysis of ChIP-seq; MEME; multiple Em for motif elicitation; modENCODE; nuclear factor κB; PCR; polymerase chain reaction; RNA; ribonucleic acid; R-ChIP; robotic ChIP; SNP; sequencing; short oligonucleotide alignment program; SPP; signal transducers and activators of transcription; SUMO; single nucleotide polymorphism; SOAP; small ubiquitin-like modifier; TFs; transcription factor binding sites; TSS; transcription factors; TFBS; transcription start site; UCSC; ultraviolet..
Figures

Principle of ChIP assay. The protein-DNA complexes are crosslinked in the nucleus, so the protein of interest and its chromatin binding site can be fixed. After lysing the cells, the protein-DNA complexes are sonicated into 200-1000bp fragments, and immunoprecipitated by probing with specific antibody. The crosslinks of the protein-DNA complexes are then reversed, and DNA is further purified and subjected to further analysis.
Similar articles
-
Mukherjee S, Hsieh J. Mukherjee S, et al. Methods Mol Biol. 2018;1686:265-286. doi: 10.1007/978-1-4939-7371-2_19. Methods Mol Biol. 2018. PMID: 29030827 Free PMC article.
-
Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
Hitchler MJ, Rice JC. Hitchler MJ, et al. Methods Mol Biol. 2011;767:253-67. doi: 10.1007/978-1-61779-201-4_19. Methods Mol Biol. 2011. PMID: 21822881
-
Characterization of genome-wide binding of NF-κB in TNFα-stimulated HeLa cells.
Xing Y, Yang Y, Zhou F, Wang J. Xing Y, et al. Gene. 2013 Sep 10;526(2):142-9. doi: 10.1016/j.gene.2013.05.001. Epub 2013 May 17. Gene. 2013. PMID: 23688556
-
ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
Chen X, Bhadauria V, Ma B. Chen X, et al. Curr Issues Mol Biol. 2018;27:171-180. doi: 10.21775/cimb.027.171. Epub 2017 Sep 8. Curr Issues Mol Biol. 2018. PMID: 28885181 Review.
-
Yan H, Tian S, Slager SL, Sun Z. Yan H, et al. Epigenomics. 2016 Sep;8(9):1239-58. doi: 10.2217/epi-2016-0053. Epub 2016 Jun 20. Epigenomics. 2016. PMID: 27319740 Review.
Cited by
-
Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy.
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Nair T, et al. Nat Commun. 2024 Sep 16;15(1):8129. doi: 10.1038/s41467-024-52233-5. Nat Commun. 2024. PMID: 39285192 Free PMC article.
-
Condition-Specific Modeling of Biophysical Parameters Advances Inference of Regulatory Networks.
Tchourine K, Vogel C, Bonneau R. Tchourine K, et al. Cell Rep. 2018 Apr 10;23(2):376-388. doi: 10.1016/j.celrep.2018.03.048. Cell Rep. 2018. PMID: 29641998 Free PMC article.
-
Performance comparison: exome sequencing as a single test replacing Sanger sequencing.
Fridman H, Bormans C, Einhorn M, Au D, Bormans A, Porat Y, Sanchez LF, Manning B, Levy-Lahad E, Behar DM. Fridman H, et al. Mol Genet Genomics. 2021 May;296(3):653-663. doi: 10.1007/s00438-021-01772-3. Epub 2021 Mar 11. Mol Genet Genomics. 2021. PMID: 33694043
-
Xiao S, Kai Z, Murphy D, Li D, Patel D, Bielowka AM, Bernabeu-Herrero ME, Abdulmogith A, Mumford AD, Westbury SK, Aldred MA, Vargesson N, Caulfield MJ; Genomics England Research Consortium; Shovlin CL. Xiao S, et al. Am J Hum Genet. 2023 Nov 2;110(11):1903-1918. doi: 10.1016/j.ajhg.2023.09.005. Epub 2023 Oct 9. Am J Hum Genet. 2023. PMID: 37816352 Free PMC article.
-
LeBlanc VG, Marra MA. LeBlanc VG, et al. Cancers (Basel). 2015 Sep 23;7(3):1925-58. doi: 10.3390/cancers7030869. Cancers (Basel). 2015. PMID: 26404381 Free PMC article. Review.
References
-
- Nowak DE, Tian B, Brasier AR. Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotechniques 2005; 39:715-25; PMID:16315372; http://dx.doi.org/10.1007/978-1-61779-376-9_7 - DOI - PubMed
-
- Weinmann SA, Bartley MS, Zhang T, Zhang QM, Farnham JP. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol. Cell Biol 2001; 21:6820-32; PMID:11564866; http://dx.doi.org/10.1128/MCB.21.20.6820-6832.2001 - DOI - PMC - PubMed
-
- Weinmann SA, Farnham JP. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 2002; 26:37-47; PMID:12054903; http://dx.doi.org/10.1016/S1046-2023(02)00006-3 - DOI - PubMed
-
- Weinmann SA, Yan SP, Oberley JM, Huang HT, Farnham JP. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 2002; 16:235-44; PMID:11799066; http://dx.doi.org/10.1101/gad.943102 - DOI - PMC - PubMed
-
- Spencer AV, Sun MJ, Li L, Davie RJ. Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 2003; 31:67-5; PMID:12893175; http://dx.doi.org/10.1016/S1046-2023(03)00089-6 - DOI - PubMed
Publication types
MeSH terms
Substances
Grants and funding
The research is supported by grants 23-862-07TL (to TL) and 036433730102 (to TL).
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous