Transcriptome sequencing in a Tibetan barley landrace with high resistance to powdery mildew - PubMed
Transcriptome sequencing in a Tibetan barley landrace with high resistance to powdery mildew
Xing-Quan Zeng et al. ScientificWorldJournal. 2014.
Abstract
Hulless barley is an important cereal crop worldwide, especially in Tibet of China. However, this crop is usually susceptible to powdery mildew caused by Blumeria graminis f. sp. hordei. In this study, we aimed to understand the functions and pathways of genes involved in the disease resistance by transcriptome sequencing of a Tibetan barley landrace with high resistance to powdery mildew. A total of 831 significant differentially expressed genes were found in the infected seedlings, covering 19 functions. Either "cell," "cell part," and "extracellular region" in the cellular component category or "binding" and "catalytic" in the category of molecular function as well as "metabolic process" and "cellular process" in the biological process category together demonstrated that these functions may be involved in the resistance to powdery mildew of the hulless barley. In addition, 330 KEGG pathways were found using BLASTx with an E-value cut-off of <10(-5). Among them, three pathways, namely, "photosynthesis," "plant-pathogen interaction," and "photosynthesis-antenna proteins" had significant matches in the database. Significant expressions of the three pathways were detected at 24 h, 48 h, and 96 h after infection, respectively. These results indicated a complex process of barley response to powdery mildew infection.
Figures

Mapping reads (exon, intron, and intergene) coverage of A (C0, TR130348).

Distributed density of gene global expression of each sample.

Euclidean distance was used to establish the distance of expression between A (C0, TR130348) and B (C24, TR130349).

Histogram presentation of gene ontology classification between A (C0, TR130348) and B (C24, TR130349). The results are summarized in three main categories: biological process, cellular component, and molecular function. The right y-axis indicates the number of genes in a category. The left y-axis indicates the percentage of a specific category of genes in that main category.
Similar articles
-
Yuan H, Zeng X, Yang Q, Xu Q, Wang Y, Jabu D, Sang Z, Tashi N. Yuan H, et al. Sci Rep. 2018 Oct 8;8(1):14928. doi: 10.1038/s41598-018-33113-7. Sci Rep. 2018. PMID: 30297768 Free PMC article.
-
Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A. Backes G, et al. Theor Appl Genet. 2003 Jan;106(2):353-62. doi: 10.1007/s00122-002-1148-1. Epub 2002 Nov 14. Theor Appl Genet. 2003. PMID: 12582863
-
Li Y, Guo G, Zhou L, Chen Y, Zong Y, Huang J, Lu R, Liu C. Li Y, et al. Int J Mol Sci. 2019 Dec 24;21(1):151. doi: 10.3390/ijms21010151. Int J Mol Sci. 2019. PMID: 31878350 Free PMC article.
-
Li Q, Niu Z, Bao Y, Tian Q, Wang H, Kong L, Feng D. Li Q, et al. Gene. 2016 Sep 15;590(1):5-17. doi: 10.1016/j.gene.2016.06.005. Epub 2016 Jun 2. Gene. 2016. PMID: 27265028 Review.
-
Magical mystery tour: MLO proteins in plant immunity and beyond.
Acevedo-Garcia J, Kusch S, Panstruga R. Acevedo-Garcia J, et al. New Phytol. 2014 Oct;204(2):273-81. doi: 10.1111/nph.12889. New Phytol. 2014. PMID: 25453131 Review.
Cited by
-
Habachi-Houimli Y, Khalfallah Y, Mezghani-Khemakhem M, Makni H, Makni M, Bouktila D. Habachi-Houimli Y, et al. 3 Biotech. 2018 Nov;8(11):453. doi: 10.1007/s13205-018-1478-6. Epub 2018 Oct 19. 3 Biotech. 2018. PMID: 30370194 Free PMC article.
-
Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice.
Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K. Suratanee A, et al. Genes (Basel). 2018 Nov 29;9(12):594. doi: 10.3390/genes9120594. Genes (Basel). 2018. PMID: 30501128 Free PMC article.
-
Transcriptomic Insight into Viviparous Growth in Water Lily.
Su Q, Wang HY, Tian M, Li CN, Li XM, Huang ZW, Bu ZY, Lu JS. Su Q, et al. Biomed Res Int. 2022 Jul 7;2022:8445484. doi: 10.1155/2022/8445484. eCollection 2022. Biomed Res Int. 2022. PMID: 35845943 Free PMC article.
-
Transcriptome Analysis Reveals the Important Role of WRKY28 in Fusarium oxysporum Resistance.
Diao J, Wang J, Zhang P, Hao X, Wang Y, Liang L, Zhang Y, Ma W, Ma L. Diao J, et al. Front Plant Sci. 2021 Aug 20;12:720679. doi: 10.3389/fpls.2021.720679. eCollection 2021. Front Plant Sci. 2021. PMID: 34490017 Free PMC article.
-
Xu C, Zhan C, Huang S, Xu Q, Tang T, Wang Y, Luo J, Zeng X. Xu C, et al. Front Plant Sci. 2022 Jun 30;13:900345. doi: 10.3389/fpls.2022.900345. eCollection 2022. Front Plant Sci. 2022. PMID: 35845698 Free PMC article.
References
-
- Bhatty R. S. β-glucan and flour yield of hull-less barley. Cereal Chemistry. 1999;76(2):314–315. doi: 10.1094/cchem.1999.76.2.314. - DOI
-
- McDonald B. A., Linde C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica. 2002;124(2):163–180. doi: 10.1023/a:1015678432355. - DOI
-
- Fischbeck G., Jahoor A. The transfer of genes for mildew resistance from Hordeum spontaneum . In: Jørgensen J. H., editor. Integrated Control of Cereal Mildews: Virulence Patterns and Their Change. Roskilde, Denmark: Risø National Laboratory; 1991. pp. 247–255. http://agris.fao.org/agris-search/search.do?recordID=DK9420942.
-
- Jørgensen J. H., Wolfe P. M. Genetics of powdery mildew resistance in barley. Critical Reviews in Plant Sciences. 1994;13(1):97–119. doi: 10.1080/07352689409701910. - DOI
-
- Helms Jørgensen J., Jensen H. P. Powdery mildew resistance in barley landrace material. I. Screening for resistance. Euphytica. 1997;97(2):227–233. doi: 10.1023/A:1003032424968. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources