X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis - PubMed
- ️Thu Jan 01 2015
. 2015 May 7;521(7550):105-9.
doi: 10.1038/nature14141. Epub 2015 Feb 9.
Affiliations
- PMID: 25686610
- DOI: 10.1038/nature14141
X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis
Kristina Haslinger et al. Nature. 2015.
Abstract
Non-ribosomal peptide synthetase (NRPS) mega-enzyme complexes are modular assembly lines that are involved in the biosynthesis of numerous peptide metabolites independently of the ribosome. The multiple interactions between catalytic domains within the NRPS machinery are further complemented by additional interactions with external enzymes, particularly focused on the final peptide maturation process. An important class of NRPS metabolites that require extensive external modification of the NRPS-bound peptide are the glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin. These clinically relevant peptide antibiotics undergo cytochrome P450-catalysed oxidative crosslinking of aromatic side chains to achieve their final, active conformation. However, the mechanism underlying the recruitment of the cytochrome P450 oxygenases to the NRPS-bound peptide was previously unknown. Here we show, through in vitro studies, that the X-domain, a conserved domain of unknown function present in the final module of all GPA NRPS machineries, is responsible for the recruitment of oxygenases to the NRPS-bound peptide to perform the essential side-chain crosslinking. X-ray crystallography shows that the X-domain is structurally related to condensation domains, but that its amino acid substitutions render it catalytically inactive. We found that the X-domain recruits cytochrome P450 oxygenases to the NRPS and determined the interface by solving the structure of a P450-X-domain complex. Additionally, we demonstrated that the modification of peptide precursors by oxygenases in vitro--in particular the installation of the second crosslink in GPA biosynthesis--occurs only in the presence of the X-domain. Our results indicate that the presentation of peptidyl carrier protein (PCP)-bound substrates for oxidation in GPA biosynthesis requires the presence of the NRPS X-domain to ensure conversion of the precursor peptide into a mature aglycone, and that the carrier protein domain alone is not always sufficient to generate a competent substrate for external cytochrome P450 oxygenases.
Similar articles
-
Haslinger K, Redfield C, Cryle MJ. Haslinger K, et al. Proteins. 2015 Apr;83(4):711-21. doi: 10.1002/prot.24758. Epub 2015 Feb 5. Proteins. 2015. PMID: 25586301
-
Brieke C, Peschke M, Haslinger K, Cryle MJ. Brieke C, et al. Angew Chem Int Ed Engl. 2015 Dec 21;54(52):15715-9. doi: 10.1002/anie.201507533. Epub 2015 Nov 9. Angew Chem Int Ed Engl. 2015. PMID: 26549530
-
Regulation of the P450 Oxygenation Cascade Involved in Glycopeptide Antibiotic Biosynthesis.
Peschke M, Haslinger K, Brieke C, Reinstein J, Cryle MJ. Peschke M, et al. J Am Chem Soc. 2016 Jun 1;138(21):6746-53. doi: 10.1021/jacs.6b00307. Epub 2016 May 23. J Am Chem Soc. 2016. PMID: 27213615
-
Peschke M, Gonsior M, Süssmuth RD, Cryle MJ. Peschke M, et al. Curr Opin Struct Biol. 2016 Dec;41:46-53. doi: 10.1016/j.sbi.2016.05.018. Epub 2016 Jun 9. Curr Opin Struct Biol. 2016. PMID: 27289043 Review.
-
Izoré T, Cryle MJ. Izoré T, et al. Nat Prod Rep. 2018 Nov 14;35(11):1120-1139. doi: 10.1039/c8np00038g. Nat Prod Rep. 2018. PMID: 30207358 Review.
Cited by
-
Discovery and biosynthesis of bosamycins from Streptomyces sp. 120454.
Xu ZF, Bo ST, Wang MJ, Shi J, Jiao RH, Sun Y, Xu Q, Tan RX, Ge HM. Xu ZF, et al. Chem Sci. 2020 Aug 11;11(34):9237-9245. doi: 10.1039/d0sc03469j. Chem Sci. 2020. PMID: 34094195 Free PMC article.
-
GPAHex-A synthetic biology platform for Type IV-V glycopeptide antibiotic production and discovery.
Xu M, Wang W, Waglechner N, Culp EJ, Guitor AK, Wright GD. Xu M, et al. Nat Commun. 2020 Oct 16;11(1):5232. doi: 10.1038/s41467-020-19138-5. Nat Commun. 2020. PMID: 33067466 Free PMC article.
-
Zhai G, Zhu Y, Sun G, Zhou F, Sun Y, Hong Z, Dong C, Leadlay PF, Hong K, Deng Z, Zhou F, Sun Y. Zhai G, et al. Nat Commun. 2023 Feb 4;14(1):612. doi: 10.1038/s41467-023-36213-9. Nat Commun. 2023. PMID: 36739290 Free PMC article.
-
Gulick AM, Aldrich CC. Gulick AM, et al. Nat Prod Rep. 2018 Nov 14;35(11):1156-1184. doi: 10.1039/c8np00044a. Nat Prod Rep. 2018. PMID: 30046790 Free PMC article. Review.
-
Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling.
Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu YP, Koteva K, Sychantha D, Coombes BK, Van Nieuwenhze MS, Brun YV, Wright GD. Culp EJ, et al. Nature. 2020 Feb;578(7796):582-587. doi: 10.1038/s41586-020-1990-9. Epub 2020 Feb 12. Nature. 2020. PMID: 32051588
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases