Synthesis of many different types of organic small molecules using one automated process - PubMed
- ️Thu Jan 01 2015
Synthesis of many different types of organic small molecules using one automated process
Junqi Li et al. Science. 2015.
Abstract
Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis.
Copyright © 2015, American Association for the Advancement of Science.
Figures

(A) A collection of compounds representing the structural and functional diversity of small molecules. (B) Analogous building block-based strategies for the synthesis of peptides and small molecules. (C) Synthesis of the Csp3-rich pentacyclic secodaphnane core (±)-14 via iterative Csp3 couplings to yield a linear precursor followed by biosynthesis-inspired cascade polycyclization. An X-ray structure of the N-bromoacyl derivative of 14 was obtained to unambiguously confirm the structure of 14. TIPS = triisopropylsilyl.

(A) MIDA boronates uniformly show binary elution properties on silica gel thin-layer chromatography. (B) Photograph of the small molecule synthesizer which comprises three modules that execute the deprotection Ⓓ, coupling Ⓒ, and purification Ⓟ steps. (C) Automated synthesis of natural products, materials, pharmaceuticals, and biological probes via iterative coupling of building blocks indicated by different colors (24).

Conditions: deprotection – NaOH, THF:H2O; coupling – cycle 1: Pd(OAc)2, SPhos, K2CO3, THF, 55 °C, 16h. cycle 2: Pd(OAc)2, XPhos, K3PO4, THF, 55 °C, 14 h. cycle 3: Pd(OAc)2, SPhos, K3PO4, THF, 55 °C, 24 h; purification – SiO2, MeOH:Et2O; THF. All protecting groups other than MIDA (R = TIPS, TBDPSE, TMSE, or Bz) were successfully removed in a separate step (24).

Modular linear precursors assembled via automated Csp2 and Csp3 couplings are diastereo- and/or enantioselectively cyclized.
Comment in
-
Service RF. Service RF. Science. 2015 Mar 13;347(6227):1190-3. doi: 10.1126/science.347.6227.1190. Science. 2015. PMID: 25766215 No abstract available.
Similar articles
-
Li J, Grillo AS, Burke MD. Li J, et al. Acc Chem Res. 2015 Aug 18;48(8):2297-307. doi: 10.1021/acs.accounts.5b00128. Epub 2015 Jul 22. Acc Chem Res. 2015. PMID: 26200460 Free PMC article.
-
Contemporary carbocation chemistry: applications in organic synthesis.
Naredla RR, Klumpp DA. Naredla RR, et al. Chem Rev. 2013 Sep 11;113(9):6905-48. doi: 10.1021/cr4001385. Epub 2013 Jul 2. Chem Rev. 2013. PMID: 23819438 Review. No abstract available.
-
Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis.
Hartman RL, McMullen JP, Jensen KF. Hartman RL, et al. Angew Chem Int Ed Engl. 2011 Aug 8;50(33):7502-19. doi: 10.1002/anie.201004637. Epub 2011 Jun 27. Angew Chem Int Ed Engl. 2011. PMID: 21710673 Review.
-
Organic synthesis: New uses for old building blocks.
Aggarwal VK. Aggarwal VK. Nat Chem. 2009 Sep;1(6):433-4. doi: 10.1038/nchem.346. Nat Chem. 2009. PMID: 21378909 No abstract available.
-
Catalytic enantioselective synthesis of quaternary carbon stereocentres.
Quasdorf KW, Overman LE. Quasdorf KW, et al. Nature. 2014 Dec 11;516(7530):181-91. doi: 10.1038/nature14007. Nature. 2014. PMID: 25503231 Free PMC article.
Cited by
-
Williams AF, White AJP, Spivey AC, Cordier CJ. Williams AF, et al. Chem Sci. 2020 Mar 3;11(12):3301-3306. doi: 10.1039/d0sc00230e. Chem Sci. 2020. PMID: 34122837 Free PMC article.
-
Keaveney ST, Kundu G, Schoenebeck F. Keaveney ST, et al. Angew Chem Int Ed Engl. 2018 Sep 17;57(38):12573-12577. doi: 10.1002/anie.201808386. Epub 2018 Aug 27. Angew Chem Int Ed Engl. 2018. PMID: 30091504 Free PMC article.
-
Mendel M, Kalvet I, Hupperich D, Magnin G, Schoenebeck F. Mendel M, et al. Angew Chem Int Ed Engl. 2020 Jan 27;59(5):2115-2119. doi: 10.1002/anie.201911465. Epub 2019 Dec 16. Angew Chem Int Ed Engl. 2020. PMID: 31733009 Free PMC article.
-
Sartipzadeh O, Naghib SM, Haghiralsadat F, Shokati F, Rahmanian M. Sartipzadeh O, et al. Sci Rep. 2022 May 19;12(1):8382. doi: 10.1038/s41598-022-12031-9. Sci Rep. 2022. PMID: 35589742 Free PMC article.
-
Preparation of MIDA Anhydride and Reaction with Boronic Acids.
Chen PJ, Kelly AM, Blair DJ, Burke MD. Chen PJ, et al. Organic Synth. 2022;99:92-112. doi: 10.15227/orgsyn.099.0092. Epub 2022 May 25. Organic Synth. 2022. PMID: 37587918 Free PMC article.
References
-
- Merrifield RB. Science. 1965;150:178–185. - PubMed
-
- Caruthers MH. Science. 1985;230:281–285. - PubMed
-
- Plante OJ, Palmacci ER, Seeberger PH. Science. 2001;291:1523–1527. - PubMed
-
- Fuse S, Machida K, Takahashi T. In: New Strategies in Chemical Synthesis and Catalysis. Pignataro B, editor. Chapter 2 Wiley-VCH; Weinheim, Germany: 2012.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources