A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species - PubMed
- ️Thu Jan 01 2015
Comparative Study
. 2015 Aug 1;469(3):375-89.
doi: 10.1042/BJ20150390. Epub 2015 Jun 11.
Elizabeth H Neilson 1 , Mohammed S Motawia 1 , Carl Erik Olsen 1 , Niels Agerbirk 1 , Christopher J Gray 2 , Sabine Flitsch 2 , Sebastian Meier 3 , Daniele Silvestro 4 , Kirsten Jørgensen 1 , Raquel Sánchez-Pérez 1 , Birger Lindberg Møller 5 , Nanna Bjarnholt 1
Affiliations
- PMID: 26205491
- DOI: 10.1042/BJ20150390
Free article
Comparative Study
A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species
Martina Pičmanová et al. Biochem J. 2015.
Free article
Abstract
Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and 'anitriles' derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants.
Keywords: almond; cassava; endogenous turnover; ion-mobility mass spectrometry; sorghum.
© 2015 Authors; published by Portland Press Limited.
Similar articles
-
Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K, Møller BL, Rook F. Takos AM, et al. Plant J. 2011 Oct;68(2):273-86. doi: 10.1111/j.1365-313X.2011.04685.x. Epub 2011 Jul 26. Plant J. 2011. PMID: 21707799
-
Gleadow RM, Møldrup ME, O'Donnell NH, Stuart PN. Gleadow RM, et al. J Sci Food Agric. 2012 Aug 30;92(11):2234-8. doi: 10.1002/jsfa.5752. Epub 2012 Jun 14. J Sci Food Agric. 2012. PMID: 22700371
-
Park H, Chung H, Choi S, Bahn YS, Son J. Park H, et al. Food Chem. 2024 Oct 30;456:139872. doi: 10.1016/j.foodchem.2024.139872. Epub 2024 May 27. Food Chem. 2024. PMID: 38865818
-
Cyanogenesis in plants and arthropods.
Zagrobelny M, Bak S, Møller BL. Zagrobelny M, et al. Phytochemistry. 2008 May;69(7):1457-68. doi: 10.1016/j.phytochem.2008.02.019. Epub 2008 Mar 18. Phytochemistry. 2008. PMID: 18353406 Review.
-
Biosynthesis and regulation of cyanogenic glycoside production in forage plants.
Sun Z, Zhang K, Chen C, Wu Y, Tang Y, Georgiev MI, Zhang X, Lin M, Zhou M. Sun Z, et al. Appl Microbiol Biotechnol. 2018 Jan;102(1):9-16. doi: 10.1007/s00253-017-8559-z. Epub 2017 Oct 12. Appl Microbiol Biotechnol. 2018. PMID: 29022076 Review.
Cited by
-
Hansen CC, Sørensen M, Bellucci M, Brandt W, Olsen CE, Goodger JQD, Woodrow IE, Lindberg Møller B, Neilson EHJ. Hansen CC, et al. New Phytol. 2023 Feb;237(3):999-1013. doi: 10.1111/nph.18581. Epub 2022 Dec 3. New Phytol. 2023. PMID: 36305250 Free PMC article.
-
Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor.
Sohail MN, Quinn AA, Blomstedt CK, Gleadow RM. Sohail MN, et al. Planta. 2022 Feb 28;255(4):74. doi: 10.1007/s00425-022-03844-z. Planta. 2022. PMID: 35226202 Free PMC article.
-
Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts.
Zagrobelny M, de Castro ÉCP, Møller BL, Bak S. Zagrobelny M, et al. Insects. 2018 May 3;9(2):51. doi: 10.3390/insects9020051. Insects. 2018. PMID: 29751568 Free PMC article. Review.
-
Heraud P, Cowan MF, Marzec KM, Møller BL, Blomstedt CK, Gleadow R. Heraud P, et al. Sci Rep. 2018 Feb 9;8(1):2691. doi: 10.1038/s41598-018-20928-7. Sci Rep. 2018. PMID: 29426935 Free PMC article.
-
Frisch T, Motawia MS, Olsen CE, Agerbirk N, Møller BL, Bjarnholt N. Frisch T, et al. Front Plant Sci. 2015 Oct 31;6:926. doi: 10.3389/fpls.2015.00926. eCollection 2015. Front Plant Sci. 2015. PMID: 26583022 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources