Mechanisms of FGF gradient formation during embryogenesis - PubMed
Review
Mechanisms of FGF gradient formation during embryogenesis
Revathi Balasubramanian et al. Semin Cell Dev Biol. 2016 May.
Abstract
Fibroblast growth factors (FGFs) have long been attributed to influence morphogenesis in embryonic development. Signaling by FGF morphogen encodes positional identity of tissues by creating a concentration gradient over the developing embryo. Various mechanisms that influence the development of such gradient have been elucidated in the recent past. These mechanisms of FGF gradient formation present either as an extracellular control over FGF ligand diffusion or as a subcellular control of FGF propagation and signaling. In this review, we describe our current understanding of FGF as a morphogen, the extracellular control of FGF gradient formation by heparan sulfate proteoglycans (HSPGs) and mechanisms of intracellular regulation of FGF signaling that influence gradient formation.
Keywords: Fibroblast growth factors; Heparan sulfate proteoglycans; Morphogen.
Copyright © 2015. Published by Elsevier Ltd.
Figures
![Fig. 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/722f/4906438/00c6b3696fba/nihms-788474-f0001.gif)
Biosynthesis and structural diversity of HSPGs: biosynthesis of HSPGs begins in the Golgi apparatus within the cytoplasm. Specific serine residues on the core protein undergo xylosylation that allows for the incorporation of repeating units of GlcA and GlcNAc residues. Ugdh is an enzyme early in the biosynthesis cascade that is required for the synthesis of GlcA and GlcNAc residues. Extl3 is an exostosin-like enzyme that attaches the first GlcNAc to the linkage tetrasaccharide on the core protein. GlcA and GlcNAc residues are added to the side chain by exostoses Ext1 and Ext2. Enzymes Ndst1-4 add N-sulfation groups following the removal of acetyl groups. Additional O-sulfation groups at various positions are added to the chain by enzymes Hs2st, Hs3st1-6, Hs6st1-3. The precursor molecule is then transported to the cell surface or ECM where it undergoes further processing. Heparanase cleaves HS side chains while specific serine proteases cause shedding of HSPGs. Shown here for three kinds of HSPGs: transmembrane type (Syndecans), GPI anchored type (Glypicans) and secreted type (Perlecans, Agrins).
![Fig. 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/722f/4906438/93b8cf4670b9/nihms-788474-f0002.gif)
Summary of mechanisms regulating FGF gradient formation: FGF ligands from the source cell are bound by HSPG side chains to prevent their diffusion farther away from the source tissue. FGF ligands bound to the receptors initiate FGF signaling cascade that is subject to feedback regulation at various levels, mainly by FGF inhibitors. Alternatively, FGF mRNA can undergo decay as cells move away from the local expression domain. FGF ligands and receptors can also be endocytosed to follow a mostly degradative pathway. FGF ligands can also be locally sequestered by the formation of microluminal structures.
Similar articles
-
Yan D, Lin X. Yan D, et al. Dev Biol. 2007 Dec 1;312(1):203-16. doi: 10.1016/j.ydbio.2007.09.015. Epub 2007 Sep 20. Dev Biol. 2007. PMID: 17959166 Free PMC article.
-
Generation and interpretation of FGF morphogen gradients in vertebrates.
Bökel C, Brand M. Bökel C, et al. Curr Opin Genet Dev. 2013 Aug;23(4):415-22. doi: 10.1016/j.gde.2013.03.002. Epub 2013 May 10. Curr Opin Genet Dev. 2013. PMID: 23669552 Review.
-
Signaling, internalization, and intracellular activity of fibroblast growth factor.
Wiedłocha A, Sørensen V. Wiedłocha A, et al. Curr Top Microbiol Immunol. 2004;286:45-79. doi: 10.1007/978-3-540-69494-6_3. Curr Top Microbiol Immunol. 2004. PMID: 15645710 Review.
-
Matsuo I, Kimura-Yoshida C. Matsuo I, et al. Curr Opin Genet Dev. 2013 Aug;23(4):399-407. doi: 10.1016/j.gde.2013.02.004. Epub 2013 Mar 4. Curr Opin Genet Dev. 2013. PMID: 23465883 Review.
-
Role of FGFs in skeletal muscle and limb development.
Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B, Szebenyi G, Zhou Z, Zuber ME, Rapraeger AC, et al. Olwin BB, et al. Mol Reprod Dev. 1994 Sep;39(1):90-100; discussion 100-1. doi: 10.1002/mrd.1080390114. Mol Reprod Dev. 1994. PMID: 7999366 Review.
Cited by
-
A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase.
Kristensen KK, Midtgaard SR, Mysling S, Kovrov O, Hansen LB, Skar-Gislinge N, Beigneux AP, Kragelund BB, Olivecrona G, Young SG, Jørgensen TJD, Fong LG, Ploug M. Kristensen KK, et al. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E6020-E6029. doi: 10.1073/pnas.1806774115. Epub 2018 Jun 13. Proc Natl Acad Sci U S A. 2018. PMID: 29899144 Free PMC article.
-
Fischer SC, Schardt S, Lilao-Garzón J, Muñoz-Descalzo S. Fischer SC, et al. iScience. 2023 Sep 30;26(11):108106. doi: 10.1016/j.isci.2023.108106. eCollection 2023 Nov 17. iScience. 2023. PMID: 37915595 Free PMC article.
-
To be more precise: the role of intracellular trafficking in development and pattern formation.
York HM, Coyle J, Arumugam S. York HM, et al. Biochem Soc Trans. 2020 Oct 30;48(5):2051-2066. doi: 10.1042/BST20200223. Biochem Soc Trans. 2020. PMID: 32915197 Free PMC article. Review.
-
Du L, Sohr A, Li Y, Roy S. Du L, et al. Nat Commun. 2022 Jun 16;13(1):3482. doi: 10.1038/s41467-022-30417-1. Nat Commun. 2022. PMID: 35710780 Free PMC article.
-
Wang N, Dong Y, Xu X, Shen Y, Huang Z, Yu Y, Liu Z, Gong W, Zhang S, Zheng Y, Song Y, Zhu Z, Jin L, Cong W. Wang N, et al. Cell Prolif. 2022 Nov;55(11):e13315. doi: 10.1111/cpr.13315. Epub 2022 Jul 18. Cell Prolif. 2022. PMID: 35851701 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous