Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate - PubMed
- ️Thu Jan 01 2015
Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate
Shona A Mookerjee et al. J Vis Exp. 2015.
Abstract
Extracellular measurement of oxygen consumption and acid production is a simple and powerful way to monitor rates of respiration and glycolysis(1). Both mitochondrial (respiration) and non-mitochondrial (other redox) reactions consume oxygen, but these reactions can be easily distinguished by chemical inhibition of mitochondrial respiration. However, while mitochondrial oxygen consumption is an unambiguous and direct measurement of respiration rate(2), the same is not true for extracellular acid production and its relationship to glycolytic rate (3-6). Extracellular acid produced by cells is derived from both lactate, produced by anaerobic glycolysis, and CO2, produced in the citric acid cycle during respiration. For glycolysis, the conversion of glucose to lactate(-) + H(+) and the export of products into the assay medium is the source of glycolytic acidification. For respiration, the export of CO2, hydration to H2CO3 and dissociation to HCO3(-) + H(+) is the source of respiratory acidification. The proportions of glycolytic and respiratory acidification depend on the experimental conditions, including cell type and substrate(s) provided, and can range from nearly 100% glycolytic acidification to nearly 100% respiratory acidification (6). Here, we demonstrate the data collection and calculation methods needed to determine respiratory and glycolytic contributions to total extracellular acidification by whole cells in culture using C2C12 myoblast cells as a model.
Similar articles
-
The contributions of respiration and glycolysis to extracellular acid production.
Mookerjee SA, Goncalves RLS, Gerencser AA, Nicholls DG, Brand MD. Mookerjee SA, et al. Biochim Biophys Acta. 2015 Feb;1847(2):171-181. doi: 10.1016/j.bbabio.2014.10.005. Epub 2014 Oct 27. Biochim Biophys Acta. 2015. PMID: 25449966
-
Mookerjee SA, Gerencser AA, Nicholls DG, Brand MD. Mookerjee SA, et al. J Biol Chem. 2017 Apr 28;292(17):7189-7207. doi: 10.1074/jbc.M116.774471. Epub 2017 Mar 7. J Biol Chem. 2017. PMID: 28270511 Free PMC article.
-
Bioenergetic profile experiment using C2C12 myoblast cells.
Nicholls DG, Darley-Usmar VM, Wu M, Jensen PB, Rogers GW, Ferrick DA. Nicholls DG, et al. J Vis Exp. 2010 Dec 6;(46):2511. doi: 10.3791/2511. J Vis Exp. 2010. PMID: 21189469 Free PMC article.
-
Methods to detect mitochondrial function.
Merlo-Pich M, Deleonardi G, Biondi A, Lenaz G. Merlo-Pich M, et al. Exp Gerontol. 2004 Mar;39(3):277-81. doi: 10.1016/j.exger.2003.11.014. Exp Gerontol. 2004. PMID: 15036387 Review.
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
Lunt SY, Vander Heiden MG. Lunt SY, et al. Annu Rev Cell Dev Biol. 2011;27:441-64. doi: 10.1146/annurev-cellbio-092910-154237. Annu Rev Cell Dev Biol. 2011. PMID: 21985671 Review.
Cited by
-
Analysis of Human Natural Killer Cell Metabolism.
Traba J, Waldmann TA, Anton OM. Traba J, et al. J Vis Exp. 2020 Jun 22;(160):10.3791/61466. doi: 10.3791/61466. J Vis Exp. 2020. PMID: 32628161 Free PMC article.
-
Chattopadhyay A, Jagdish S, Karhale AK, Ramteke NS, Zaib A, Nandi D. Chattopadhyay A, et al. Front Immunol. 2023 Oct 27;14:1282653. doi: 10.3389/fimmu.2023.1282653. eCollection 2023. Front Immunol. 2023. PMID: 37965321 Free PMC article.
-
Circ_0105346 Knockdown Inhibits Osteosarcoma Development via Regulating miR-1182/WNT7B Axis.
Liu J, Li X, Yue L, Lv H. Liu J, et al. Cancer Manag Res. 2021 Jan 20;13:521-535. doi: 10.2147/CMAR.S281430. eCollection 2021. Cancer Manag Res. 2021. PMID: 33505171 Free PMC article. Retracted.
-
Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy.
Cumming BM, Pacl HT, Steyn AJC. Cumming BM, et al. Front Cell Infect Microbiol. 2020 Sep 18;10:576596. doi: 10.3389/fcimb.2020.576596. eCollection 2020. Front Cell Infect Microbiol. 2020. PMID: 33072629 Free PMC article. Review.
-
IKCa channels control breast cancer metabolism including AMPK-driven autophagy.
Gross D, Bischof H, Maier S, Sporbeck K, Birkenfeld AL, Malli R, Ruth P, Proikas-Cezanne T, Lukowski R. Gross D, et al. Cell Death Dis. 2022 Oct 27;13(10):902. doi: 10.1038/s41419-022-05329-z. Cell Death Dis. 2022. PMID: 36302750 Free PMC article.
References
-
- Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Meth. Enzymol. 2014;547:309–354. - PubMed
-
- Renner K, Jansen-Dürr P, Gnaiger E. Biphasic oxygen kinetics of cellular respiration and linear oxygen dependence of antimycin A inhibited oxygen consumption. Mol. Biol. Rep. 2002;29(1-2):83–87. - PubMed
-
- Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK. Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin. Cancer Res. 2002;8(4):1284–1291. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources