Estimating cranial musculoskeletal constraints in theropod dinosaurs - PubMed
- ️Thu Jan 01 2015
. 2015 Nov 4;2(11):150495.
doi: 10.1098/rsos.150495. eCollection 2015 Nov.
Affiliations
- PMID: 26716007
- PMCID: PMC4680622
- DOI: 10.1098/rsos.150495
Estimating cranial musculoskeletal constraints in theropod dinosaurs
Stephan Lautenschlager. R Soc Open Sci. 2015.
Abstract
Many inferences on the biology, behaviour and ecology of extinct vertebrates are based on the reconstruction of the musculature and rely considerably on its accuracy. Although the advent of digital reconstruction techniques has facilitated the creation and testing of musculoskeletal hypotheses in recent years, muscle strain capabilities have rarely been considered. Here, a digital modelling approach using the freely available visualization and animation software Blender is applied to estimate cranial muscle length changes and optimal and maximal possible gape in different theropod dinosaurs. Models of living archosaur taxa (Alligator mississippiensis, Buteo buteo) were used in an extant phylogenetically bracketed framework to validate the method. Results of this study demonstrate that Tyrannosaurus rex, Allosaurus fragilis and Erlikosaurus andrewsi show distinct differences in the recruitment of the jaw adductor musculature and resulting gape, confirming previous dietary and ecological assumptions. While the carnivorous taxa T. rex and Allo. fragilis were capable of a wide gape and sustained muscle force, the herbivorous therizinosaurian E. andrewsi was constrained to small gape angles.
Keywords: Dinosauria; digital reconstruction; functional morphology; muscle strain; musculature.
Figures

Digital models of the studied fossil theropod and extant archosaur taxa in a simplified phylogenetic context. Cranial models not to scale.

Model and analysis set-up in B
lenderexemplified for Tyrannosaurus rex shown in (a) solid and (b) wireframe view.

Muscle strain factors plotted against gape angle for (a,c,e) Alligator mississippiensis and (b,d,e) Buteo buteo. Analysis were run with resting length set at a gape angle of (a,b) 3.0°, (c,d) 6.0° and (e,f) 9.0°. Muscle abbreviations as in table 1.

Gape angles at optimal and maximum tension limit for Alligator mississippiensis with muscle resting lengths at a gape angle of (a) 3.0°, (b) 6.0° and (c) 9.0°. Bar diagrams show strain factors of individual muscles at optimal and maximum tension limit. Muscle abbreviations as in table 1.

Gape angles at optimal and maximum tension limit for Buteo buteo with muscle resting lengths at a gape angle of (a) 3.0°, (b) 6.0° and (c) 9.0°. Bar diagrams show strain factors of individual muscles at optimal and maximum tension limit. Muscle abbreviations as in table 1.

Muscle strain factors plotted against gape angle for (a,b) Allosaurus fragilis, (c,d) Tyrannosaurus rex and (e,f) Erlikosaurus andrewsi. Analysis were run with resting length set at a gape angle of (a,c,e) 3.0° and (b,d,f) 6.0°. Muscle abbreviations as in table 1.

Gape angles at optimal and maximum tension limit for (a) Allosaurus fragilis, (b) Tyrannosaurus rex and (c) Erlikosaurus andrewsi with muscle resting length at a gape angle of 3.0°. Bar diagrams show strain factors of individual muscles at optimal and maximum tension limit. Muscle abbreviations as in table 1.

Gape angles at optimal and maximum tension limit for (a) Allosaurus fragilis, (b) Tyrannosaurus rex and (c) Erlikosaurus andrewsiwith muscle resting length at a gape angle of 6.0°. Bar diagrams show strain factors of individual muscles at optimal and maximum tension limit. Muscle abbreviations as in table 1.
Similar articles
-
Lautenschlager S. Lautenschlager S. J Anat. 2013 Feb;222(2):260-72. doi: 10.1111/joa.12000. Epub 2012 Oct 15. J Anat. 2013. PMID: 23061752 Free PMC article.
-
Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria.
Meade LE, Ma W. Meade LE, et al. Sci Rep. 2022 Feb 22;12(1):3010. doi: 10.1038/s41598-022-06910-4. Sci Rep. 2022. PMID: 35194096 Free PMC article.
-
Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda).
Carrano MT, Hutchinson JR. Carrano MT, et al. J Morphol. 2002 Sep;253(3):207-28. doi: 10.1002/jmor.10018. J Morphol. 2002. PMID: 12125061
-
New insights into dinosaur jaw muscle anatomy.
Holliday CM. Holliday CM. Anat Rec (Hoboken). 2009 Sep;292(9):1246-65. doi: 10.1002/ar.20982. Anat Rec (Hoboken). 2009. PMID: 19711458 Review.
-
Benson RB, Butler RJ, Carrano MT, O'Connor PM. Benson RB, et al. Biol Rev Camb Philos Soc. 2012 Feb;87(1):168-93. doi: 10.1111/j.1469-185X.2011.00190.x. Epub 2011 Jul 7. Biol Rev Camb Philos Soc. 2012. PMID: 21733078 Review.
Cited by
-
Decoupled form and function in disparate herbivorous dinosaur clades.
Lautenschlager S, Brassey CA, Button DJ, Barrett PM. Lautenschlager S, et al. Sci Rep. 2016 May 20;6:26495. doi: 10.1038/srep26495. Sci Rep. 2016. PMID: 27199098 Free PMC article.
-
Montefeltro FC, Lautenschlager S, Godoy PL, Ferreira GS, Butler RJ. Montefeltro FC, et al. J Anat. 2020 Aug;237(2):323-333. doi: 10.1111/joa.13192. Epub 2020 Apr 7. J Anat. 2020. PMID: 32255518 Free PMC article.
-
Evidence for high-performance suction feeding in the Pennsylvanian stem-group holocephalan Iniopera.
Dearden RP, Herrel A, Pradel A. Dearden RP, et al. Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2207854119. doi: 10.1073/pnas.2207854119. Epub 2023 Jan 17. Proc Natl Acad Sci U S A. 2023. PMID: 36649436 Free PMC article.
-
Dynamic Musculoskeletal Functional Morphology: Integrating diceCT and XROMM.
Orsbon CP, Gidmark NJ, Ross CF. Orsbon CP, et al. Anat Rec (Hoboken). 2018 Feb;301(2):378-406. doi: 10.1002/ar.23714. Anat Rec (Hoboken). 2018. PMID: 29330951 Free PMC article.
-
Notes on the cheek region of the Late Jurassic theropod dinosaur Allosaurus.
Evers SW, Foth C, Rauhut OWM. Evers SW, et al. PeerJ. 2020 Feb 7;8:e8493. doi: 10.7717/peerj.8493. eCollection 2020. PeerJ. 2020. PMID: 32076581 Free PMC article.
References
-
- Westneat MW, Long JH, Hoese W, Nowicki S. 1993. Kinematics of birdsong: functional correlation of cranial movements and acoustic features in sparrows. J. Exp. Biol. 182, 147–171. - PubMed
-
- Herring S. 1975. Adaptations for gape in the hippopotamus and its relatives. Forma Funct. 8, 85–100.
-
- Garrick LD, Lang JF, Herzog HAJ. 1978. Social signals of adult American alligators. Bull. Am. Mus. Nat. Hist. 160, 153–192.
-
- Terhune CE, Hylander WL, Vinyard CJ, Taylor AB. 2015. Jaw-muscle architecture and mandibular morphology influence relative maximum jaw gapes in the sexually dimorphic Macaca fascicularis. J. Hum. Evol. 82, 145–158. (doi:10.1016/j.jhevol.2015.02.006) - DOI - PubMed
-
- Spencer MA. 1999. Constraints on masticatory system evolution in anthropoid primates. Am. J. Phys. Anthropol. 108, 483–506. (doi:10.1002/(SICI)1096-8644(199904)108:4<483::AID-AJPA7>3.0.CO;2-L) - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources