Morphology of nuclear transcription - PubMed
Review
Morphology of nuclear transcription
Klara Weipoltshammer et al. Histochem Cell Biol. 2016 Apr.
Abstract
Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle.
Keywords: Chromatin; Epigenetic gene regulation; Loop formation; Nuclear architecture; Nucleoli; Transcription factory.
Figures

a BrU incorporation to visualize nascent transcripts, HeLa cell, confocal image (projection) Bar 5 µm b Nucleolus of HeLa cell, sketch of Christmas tree in relation to the fibrillar complex where transcription takes place (inset), TEM Bar 1 µm c In situ hybridization to detect rRNA which is present in df and gc, HeLa cell, TEM, Bar 1 µm, fc fibrillar center, df dense fibrillar component, gc granular component

a Detection of a fragment of the transcription unit (red) and of the intergenic spacer (green) of rDNA, FISH on stretched DNA fibers, nuclear halo preparation, Bar 5 µm, b HeLa cell expressing histones H2B (green) and histone H3 variant H3.3 (red) which has been associated with transcriptional activity (Ahmad and Henikoff 2002), note that nucleoli are largely devoid of signal, structured illumination imaging, Bar 5 µm, c FISH with a probe covering the entire rDNA repeat showing an extracted rDNA loop, nuclear halo preparation

Sketch to compare morphology of transcription a in nucleoli and b in transcription factories. The transcription factory core (tf) is functionally related to the fibrillar center (fc), and transcription takes place at the surface of both entities. Active genes come into contact with the polymerases by chromatin loop formation out of silenced chromatin (gray dots). In nucleoli, nascent transcripts (brown) are predominately found in the dense fibrillar component (df) where RNA processing commences. A similar zone can be postulated for the transcription factory, Pol I…green dots, Pol II pink dots, gc granular component

Human peripheral lymphocytes a unstimulated and b after 72-h stimulation, FISH to detect part of the TU of rDNA showing significant alterations of rDNA arrangement in the course of differentiation, nuclear outline indicated (yellow)
Similar articles
-
Casafont I, Navascués J, Pena E, Lafarga M, Berciano MT. Casafont I, et al. Neuroscience. 2006 Jun 30;140(2):453-62. doi: 10.1016/j.neuroscience.2006.02.030. Epub 2006 Mar 23. Neuroscience. 2006. PMID: 16563640
-
Changes of the nucleolus architecture in absence of the nuclear factor CTCF.
Hernández-Hernández A, Soto-Reyes E, Ortiz R, Arriaga-Canon C, Echeverría-Martinez OM, Vázquez-Nin GH, Recillas-Targa F. Hernández-Hernández A, et al. Cytogenet Genome Res. 2012;136(2):89-96. doi: 10.1159/000335752. Epub 2012 Jan 25. Cytogenet Genome Res. 2012. PMID: 22286186
-
The topography of chromosomes and genes in the nucleus.
Carmo-Fonseca M, Cunha C, Custódio N, Carvalho C, Jordan P, Ferreira J, Parreira L. Carmo-Fonseca M, et al. Exp Cell Res. 1996 Dec 15;229(2):247-52. doi: 10.1006/excr.1996.0367. Exp Cell Res. 1996. PMID: 8986605 Review.
-
The nucleolus and transcription of ribosomal genes.
Raska I, Koberna K, Malínský J, Fidlerová H, Masata M. Raska I, et al. Biol Cell. 2004 Oct;96(8):579-94. doi: 10.1016/j.biolcel.2004.04.015. Biol Cell. 2004. PMID: 15519693 Review.
-
[Control mechanisms of ribosomal RNA transcription].
Tanaka Y, Tsuneoka M. Tanaka Y, et al. Seikagaku. 2013 Oct;85(10):852-60. Seikagaku. 2013. PMID: 24392584 Review. Japanese. No abstract available.
Cited by
-
Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus.
Sas-Nowosielska H, Magalska A. Sas-Nowosielska H, et al. Int J Mol Sci. 2021 Mar 27;22(7):3478. doi: 10.3390/ijms22073478. Int J Mol Sci. 2021. PMID: 33801737 Free PMC article. Review.
-
Taatjes DJ, Roth J. Taatjes DJ, et al. Histochem Cell Biol. 2017 Mar;147(3):303-305. doi: 10.1007/s00418-017-1541-0. Epub 2017 Mar 1. Histochem Cell Biol. 2017. PMID: 28247029 No abstract available.
-
In focus in Vienna: the cell nucleus.
Weipoltshammer K, Schöfer C. Weipoltshammer K, et al. Histochem Cell Biol. 2016 Apr;145(4):341-2. doi: 10.1007/s00418-016-1420-0. Epub 2016 Feb 18. Histochem Cell Biol. 2016. PMID: 26892404 No abstract available.
-
Schöfer C, Weipoltshammer K. Schöfer C, et al. Histochem Cell Biol. 2018 Sep;150(3):209-225. doi: 10.1007/s00418-018-1696-3. Epub 2018 Jul 25. Histochem Cell Biol. 2018. PMID: 30046888 Free PMC article. Review.
-
Taatjes DJ, Roth J. Taatjes DJ, et al. Histochem Cell Biol. 2016 Aug;146(2):117-8. doi: 10.1007/s00418-016-1459-y. Epub 2016 Jul 6. Histochem Cell Biol. 2016. PMID: 27381063 No abstract available.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources