The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA - PubMed
- ️Fri Jan 01 2016
. 2016 Apr 28;532(7600):517-21.
doi: 10.1038/nature17945. Epub 2016 Apr 20.
Affiliations
- PMID: 27096362
- DOI: 10.1038/nature17945
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
Ines Fonfara et al. Nature. 2016.
Abstract
CRISPR-Cas systems that provide defence against mobile genetic elements in bacteria and archaea have evolved a variety of mechanisms to target and cleave RNA or DNA. The well-studied types I, II and III utilize a set of distinct CRISPR-associated (Cas) proteins for production of mature CRISPR RNAs (crRNAs) and interference with invading nucleic acids. In types I and III, Cas6 or Cas5d cleaves precursor crRNA (pre-crRNA) and the mature crRNAs then guide a complex of Cas proteins (Cascade-Cas3, type I; Csm or Cmr, type III) to target and cleave invading DNA or RNA. In type II systems, RNase III cleaves pre-crRNA base-paired with trans-activating crRNA (tracrRNA) in the presence of Cas9 (refs 13, 14). The mature tracrRNA-crRNA duplex then guides Cas9 to cleave target DNA. Here, we demonstrate a novel mechanism in CRISPR-Cas immunity. We show that type V-A Cpf1 from Francisella novicida is a dual-nuclease that is specific to crRNA biogenesis and target DNA interference. Cpf1 cleaves pre-crRNA upstream of a hairpin structure formed within the CRISPR repeats and thereby generates intermediate crRNAs that are processed further, leading to mature crRNAs. After recognition of a 5'-YTN-3' protospacer adjacent motif on the non-target DNA strand and subsequent probing for an eight-nucleotide seed sequence, Cpf1, guided by the single mature repeat-spacer crRNA, introduces double-stranded breaks in the target DNA to generate a 5' overhang. The RNase and DNase activities of Cpf1 require sequence- and structure-specific binding to the hairpin of crRNA repeats. Cpf1 uses distinct active domains for both nuclease reactions and cleaves nucleic acids in the presence of magnesium or calcium. This study uncovers a new family of enzymes with specific dual endoribonuclease and endonuclease activities, and demonstrates that type V-A constitutes the most minimalistic of the CRISPR-Cas systems so far described.
Similar articles
-
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Swarts DC, van der Oost J, Jinek M. Swarts DC, et al. Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016. Mol Cell. 2017. PMID: 28431230 Free PMC article.
-
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
Chylinski K, Le Rhun A, Charpentier E. Chylinski K, et al. RNA Biol. 2013 May;10(5):726-37. doi: 10.4161/rna.24321. Epub 2013 Apr 5. RNA Biol. 2013. PMID: 23563642 Free PMC article.
-
Approaches to study CRISPR RNA biogenesis and the key players involved.
Behler J, Hess WR. Behler J, et al. Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17. Methods. 2020. PMID: 31325492 Review.
-
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
Charpentier E, Richter H, van der Oost J, White MF. Charpentier E, et al. FEMS Microbiol Rev. 2015 May;39(3):428-41. doi: 10.1093/femsre/fuv023. Epub 2015 May 19. FEMS Microbiol Rev. 2015. PMID: 25994611 Free PMC article. Review.
-
The crystal structure of Cpf1 in complex with CRISPR RNA.
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z. Dong D, et al. Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20. Nature. 2016. PMID: 27096363
Cited by
-
Contribution of CRISPRable DNA to human complex traits.
Zhai R, Zheng C, Yang Z, Li T, Chen J, Shen X. Zhai R, et al. Commun Biol. 2022 Oct 20;5(1):1111. doi: 10.1038/s42003-022-03969-7. Commun Biol. 2022. PMID: 36266475 Free PMC article. Review.
-
New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review.
Salonia F, Ciacciulli A, Poles L, Pappalardo HD, La Malfa S, Licciardello C. Salonia F, et al. Front Plant Sci. 2020 Aug 14;11:1234. doi: 10.3389/fpls.2020.01234. eCollection 2020. Front Plant Sci. 2020. PMID: 32922420 Free PMC article. Review.
-
Zhou J, Ren XM, Wang X, Li Z, J Xian C. Zhou J, et al. Heliyon. 2023 Nov 29;9(12):e22767. doi: 10.1016/j.heliyon.2023.e22767. eCollection 2023 Dec. Heliyon. 2023. PMID: 38076202 Free PMC article. Review.
-
Hillary VE, Ceasar SA. Hillary VE, et al. Mol Biotechnol. 2023 Mar;65(3):311-325. doi: 10.1007/s12033-022-00567-0. Epub 2022 Sep 27. Mol Biotechnol. 2023. PMID: 36163606 Free PMC article. Review.
-
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA. East-Seletsky A, et al. Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26. Nature. 2016. PMID: 27669025 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources