Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary - PubMed
- ️Fri Jan 01 2016
Comment
. 2016 Jun 14;113(24):6707-12.
doi: 10.1073/pnas.1519508113. Epub 2016 May 9.
Pauline Charruau 2 , Elmira Mohandesan 3 , Joram M Mwacharo 4 , Pablo Orozco-terWengel 5 , Daniel Pitt 5 , Abdussamad M Abdussamad 6 , Margarethe Uerpmann 7 , Hans-Peter Uerpmann 7 , Bea De Cupere 8 , Peter Magee 9 , Majed A Alnaqeeb 10 , Bashir Salim 11 , Abdul Raziq 12 , Tadelle Dessie 13 , Omer M Abdelhadi 14 , Mohammad H Banabazi 15 , Marzook Al-Eknah 16 , Chris Walzer 17 , Bernard Faye 18 , Michael Hofreiter 19 , Joris Peters 20 , Olivier Hanotte 21 , Pamela A Burger 22
Affiliations
- PMID: 27162355
- PMCID: PMC4914195
- DOI: 10.1073/pnas.1519508113
Comment
Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary
Faisal Almathen et al. Proc Natl Acad Sci U S A. 2016.
Abstract
Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.
Keywords: Camelus dromedarius; anthropogenic admixture; demographic history; paleogenetics; wild dromedary.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
![Fig. 1.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d843/4914195/91ca3d2edad9/pnas.1519508113fig01.gif)
Representation of the mitochondrial haplotypes retrieved from 759 modern dromedaries and 15 archaeological specimens. (A) Geographical distribution of the modern haplogroups across the species range (delimited by orange dashed line). Pie charts are proportional to sample sizes of the five distinctive regions (Dataset S1). Haplogroups were defined according to Bayesian analysis of population structure (BAPS) clustering (SI Appendix). The proportion of singletons diverging from B1 by one or two mutations (seventh cluster) is depicted by the dotted line within B1 (white). The chart in the upper right corner represents haplogroups retrieved from Southern Asian (SAS*; n = 87) and Australian (AU; n = 38) dromedaries. Stars depict locations of the archaeological sites: SG, Sagalassos, Turkey (Early Byzantine, 450–700 CE); TU, Tulln, Austria (second Ottoman–Habsburg war, ca. 1683 CE); AP, Apamea, Syria (Early Byzantine, 400–600 CE); AQ, Aqaba, Jordan (Mamluk and Ottoman periods, 1260–1870 CE). The Inset in the lower right corner shows sites in the UAE: AB, Al-Buhais (5000–4000 BCE); AS, Al-Sufouh (ca. 2400–1400 BCE); TA, Tell Abraq (Late Bronze–Iron Age, 1260–500 BCE); UN, Umm-an-Nar (Early Bronze Age, 3000–2000 BCE). (B) MJN displaying 76 haplotypes grouped into two maternal lineages, HA (A1 and A2) and HB (B1–4). Haplotypes diverging from A1 and A2 and from B1–4 are colored according to BAPS clustering (SI Appendix). Circles are proportional to the sample size. Small diamonds represent median vectors corresponding to missing haplotypes or homoplasies. (C) Parsimonious representation of the occurrence and sharing of mitochondrial haplotypes (531 bp) between modern (light gray) and ancient (dark red) samples. Wild dromedary samples are marked with a dagger (†). Taxonomic determinations of ancient specimens are detailed in SI Appendix. Umm-an-Nar’s sample (UN624) was represented assuming the most frequent nucleotide (nt15486: G). In the case of the alternative allele (nt15486: A), UN624 shared its haplotype with the specimen from Tell Abraq (TA623) (SI Appendix). For both networks, consensus network of all shortest trees is shown; branch lengths are proportional to number of mutations.
![Fig. 2.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d843/4914195/cebd634d462d/pnas.1519508113fig02.gif)
Individual assignment (structure) plots of 970 (global dataset) and 810 dromedaries (excluding EAF) for a theoretical number of ancestral genetic populations (K) set at 2 and 9, respectively. Optimal clustering solution determined with DeltaK is reported in SI Appendix, Fig. S2. Sample sizes of the distinctive regions and countries are presented in SI Appendix, Table S1 and Dataset S1.
![Fig. 3.](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d843/4914195/3e2c72254351/pnas.1519508113fig03.gif)
BSP derived from the alignment of 759 modern with seven early-domesticated dromedary MT-CR sequences. The thick solid line depicts the median estimate of Ne, with black thin lines delimiting the 95% HPD. We used the archaeological dating of the wild and early-domesticated dromedary samples (SI Appendix, Table S4) to estimate the substitution rate µ = 1.232 × 10−06 substitution⋅site−1⋅y−1 (95% HPD: 4.435 × 10−07, 2.213 × 10−06). LA, Late Antiquity; MA, Middle Ages.
Comment in
-
Back to the roots and routes of dromedary domestication.
Orlando L. Orlando L. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6588-90. doi: 10.1073/pnas.1606340113. Epub 2016 May 25. Proc Natl Acad Sci U S A. 2016. PMID: 27226295 Free PMC article. No abstract available.
-
Marom N, Meiri M, Bar-Oz G. Marom N, et al. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4582. doi: 10.1073/pnas.1609773113. Epub 2016 Aug 2. Proc Natl Acad Sci U S A. 2016. PMID: 27486243 Free PMC article. No abstract available.
Comment on
-
Back to the roots and routes of dromedary domestication.
Orlando L. Orlando L. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6588-90. doi: 10.1073/pnas.1606340113. Epub 2016 May 25. Proc Natl Acad Sci U S A. 2016. PMID: 27226295 Free PMC article. No abstract available.
Similar articles
-
Mohandesan E, Speller CF, Peters J, Uerpmann HP, Uerpmann M, De Cupere B, Hofreiter M, Burger PA. Mohandesan E, et al. Mol Ecol Resour. 2017 Mar;17(2):300-313. doi: 10.1111/1755-0998.12551. Epub 2016 Aug 1. Mol Ecol Resour. 2017. PMID: 27289015 Free PMC article.
-
Bardakci F, Abdelgadir A, Alam MJ, Biyik HH, Siddiqui AJ, Badraoui R, Adnan M, Alreshidi M, Koc A, Snoussi M. Bardakci F, et al. J Genet. 2024;103:25. J Genet. 2024. PMID: 39049485
-
Naderi S, Rezaei HR, Pompanon F, Blum MG, Negrini R, Naghash HR, Balkiz O, Mashkour M, Gaggiotti OE, Ajmone-Marsan P, Kence A, Vigne JD, Taberlet P. Naderi S, et al. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17659-64. doi: 10.1073/pnas.0804782105. Epub 2008 Nov 12. Proc Natl Acad Sci U S A. 2008. PMID: 19004765 Free PMC article.
-
Aspects of Molecular Genetics in Dromedary Camel.
Piro M. Piro M. Front Genet. 2021 Oct 21;12:723181. doi: 10.3389/fgene.2021.723181. eCollection 2021. Front Genet. 2021. PMID: 34764978 Free PMC article. Review.
-
Old World camels in a modern world - a balancing act between conservation and genetic improvement.
Burger PA, Ciani E, Faye B. Burger PA, et al. Anim Genet. 2019 Dec;50(6):598-612. doi: 10.1111/age.12858. Epub 2019 Sep 18. Anim Genet. 2019. PMID: 31532019 Free PMC article. Review.
Cited by
-
Almathen F. Almathen F. Front Vet Sci. 2024 Sep 18;11:1443748. doi: 10.3389/fvets.2024.1443748. eCollection 2024. Front Vet Sci. 2024. PMID: 39359391 Free PMC article.
-
Mitochondrial DNA of the Arabian Camel Camelus dromedarius.
Manee MM, Al-Shomrani BM, Alqahtani FH. Manee MM, et al. Animals (Basel). 2024 Aug 24;14(17):2460. doi: 10.3390/ani14172460. Animals (Basel). 2024. PMID: 39272245 Free PMC article. Review.
-
Al Abri M, Alfoudari A, Mohammad Z, Almathen F, Al-Marzooqi W, Al-Hajri S, Al-Amri M, Bahbahani H. Al Abri M, et al. Front Vet Sci. 2023 Nov 30;10:1296610. doi: 10.3389/fvets.2023.1296610. eCollection 2023. Front Vet Sci. 2023. PMID: 38098998 Free PMC article.
-
Mohandesan E, Speller CF, Peters J, Uerpmann HP, Uerpmann M, De Cupere B, Hofreiter M, Burger PA. Mohandesan E, et al. Mol Ecol Resour. 2017 Mar;17(2):300-313. doi: 10.1111/1755-0998.12551. Epub 2016 Aug 1. Mol Ecol Resour. 2017. PMID: 27289015 Free PMC article.
-
Bahbahani H, Musa HH, Wragg D, Shuiep ES, Almathen F, Hanotte O. Bahbahani H, et al. Front Genet. 2019 Sep 19;10:893. doi: 10.3389/fgene.2019.00893. eCollection 2019. Front Genet. 2019. PMID: 31608121 Free PMC article.
References
-
- Bulliet R. The Camel and the Wheel. Columbia Univ Press; New York: 1975. p. 327.
-
- Faye B, Grech S, Korchani T. Le dromadaire, entre féralisation et intensification. Anthropozoologica. 2004;39(2):391–398.
-
- Wu H, et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat Commun. 2014;5:5188. - PubMed
-
- Peters J, von den Driesch A. The two-humped camel (Camelus bactrianus): New light on its distribution, management and medical treatment in the past. J Zool (Lond) 1997;242:651–679.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources