Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction - PubMed
- ️Fri Jan 01 2016
Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction
Kh Shamsur Rahman et al. J Biol Chem. 2016.
Abstract
X-ray crystallography has shown that an antibody paratope typically binds 15-22 amino acids (aa) of an epitope, of which 2-5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6-11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7-12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16-30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences.
Keywords: antibody; antigen; bioinformatics; epitope mapping; immunogenicity; protein motif; protein-protein interaction.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures
Similar articles
-
Discovery of Human-Specific Immunodominant Chlamydia trachomatis B Cell Epitopes.
Rahman KS, Darville T, Russell AN, O'Connell CM, Wiesenfeld HC, Hillier SL, Chowdhury EU, Juan YC, Kaltenboeck B. Rahman KS, et al. mSphere. 2018 Aug 1;3(4):e00246-18. doi: 10.1128/mSphere.00246-18. mSphere. 2018. PMID: 30068558 Free PMC article.
-
Rahman KS, Chowdhury EU, Poudel A, Ruettger A, Sachse K, Kaltenboeck B. Rahman KS, et al. Clin Vaccine Immunol. 2015 May;22(5):539-52. doi: 10.1128/CVI.00102-15. Epub 2015 Mar 11. Clin Vaccine Immunol. 2015. PMID: 25761461 Free PMC article.
-
Caoili SEC. Caoili SEC. Protein Pept Lett. 2021;28(8):953-962. doi: 10.2174/0929866528666210218215624. Protein Pept Lett. 2021. PMID: 33602065
-
B cell epitope mapping using synthetic peptides.
Carter JM, Loomis-Price L. Carter JM, et al. Curr Protoc Immunol. 2004 May;Chapter 9:Unit 9.4. doi: 10.1002/0471142735.im0904s60. Curr Protoc Immunol. 2004. PMID: 18432936 Review.
-
Sharon J, Rynkiewicz MJ, Lu Z, Yang CY. Sharon J, et al. Immunology. 2014 May;142(1):1-23. doi: 10.1111/imm.12213. Immunology. 2014. PMID: 24219801 Free PMC article. Review.
Cited by
-
Comprehending B-Cell Epitope Prediction to Develop Vaccines and Immunodiagnostics.
Caoili SEC. Caoili SEC. Front Immunol. 2022 Jul 7;13:908459. doi: 10.3389/fimmu.2022.908459. eCollection 2022. Front Immunol. 2022. PMID: 35874755 Free PMC article. No abstract available.
-
Bommana S, Walker E, Desclozeaux M, Timms P, Polkinghorne A. Bommana S, et al. PLoS One. 2017 Nov 30;12(11):e0188370. doi: 10.1371/journal.pone.0188370. eCollection 2017. PLoS One. 2017. PMID: 29190736 Free PMC article.
-
Batisti Biffignandi G, Vola A, Sassera D, Najafi-Fard S, Gomez Morales MA, Brunetti E, Teggi A, Goletti D, Petrone L, Tamarozzi F. Batisti Biffignandi G, et al. PLoS Negl Trop Dis. 2023 Apr 12;17(4):e0011210. doi: 10.1371/journal.pntd.0011210. eCollection 2023 Apr. PLoS Negl Trop Dis. 2023. PMID: 37043489 Free PMC article.
-
iBCE-EL: A New Ensemble Learning Framework for Improved Linear B-Cell Epitope Prediction.
Manavalan B, Govindaraj RG, Shin TH, Kim MO, Lee G. Manavalan B, et al. Front Immunol. 2018 Jul 27;9:1695. doi: 10.3389/fimmu.2018.01695. eCollection 2018. Front Immunol. 2018. PMID: 30100904 Free PMC article.
-
Discovery of Human-Specific Immunodominant Chlamydia trachomatis B Cell Epitopes.
Rahman KS, Darville T, Russell AN, O'Connell CM, Wiesenfeld HC, Hillier SL, Chowdhury EU, Juan YC, Kaltenboeck B. Rahman KS, et al. mSphere. 2018 Aug 1;3(4):e00246-18. doi: 10.1128/mSphere.00246-18. mSphere. 2018. PMID: 30068558 Free PMC article.
References
-
- Rubinstein N. D., Mayrose I., Halperin D., Yekutieli D., Gershoni J. M., and Pupko T. (2008) Computational characterization of B-cell epitopes. Mol. Immunol. 45, 3477–3489 - PubMed
-
- Ofran Y., Schlessinger A., and Rost B. (2008) Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B-cell epitopes. J. Immunol. 181, 6230–6235 - PubMed
-
- Sun J., Xu T., Wang S., Li G., Wu D., and Cao Z. (2011) Does difference exist between epitope and non-epitope residues? Immunome Res. 201, 1–11
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous