Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes - PubMed
Review
Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes
Oded Bergman et al. Can J Psychiatry. 2016 Aug.
Abstract
Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.
Les mitochondries sont un acteur clé dans la génération et la régulation de la bioénergétique cellulaire, produisant la majorité des molécules ATP par le système de phosphorylation oxydative (OXPHOS). Liées à de nombreuses voies de signalisation et fonctions cellulaires, les mitochondries, et OXPHOS en particulier, sont impliqués dans le développement neuronal, la connectivité, la plasticité et la différenciation. Des déficiences d’une variété de fonctions mitochondriales ont été décrites dans différents troubles généraux et psychiatriques, dont la schizophrénie (SCZ), une maladie grave, chronique et débilitante qui affecte lourdement la vie des patients et de leur famille. Cet article passe en revue les résultats mettant l’accent sur le rôle d’OXPHOS dans la pathophysiologie de la SCZ. Les données probantes accumulées au cours des récentes décennies dans des études d’imagerie, transcriptomiques, protéomiques et métabolomiques dénoncent la participation du déficit d’OXPHOS à la SCZ. Des anomalies ont été signalées dans les phosphates à haute énergie produits par le système OXPHOS, dans l’activité de ses complexes et de son expression génétique, principalement du complexe I (CoI). En outre, la signalisation cellulaire, comme cAMP/PKA et Ca+2, le développement neuronal, la connectivité et la plasticité ont été liés à la fonction OXPHOS et sont déclarés déficients dans la SCZ. Finalement, CoI s’est avéré être un site d’interaction pour la dopamine (DA) et les antipsychotiques, ce qui étaye encore son rôle dans la pathologie de la SCZ. Comprendre le rôle des mitochondries et d’OXPHOS en particulier peut susciter de nouvelles idées pour la pathophysiologie et l’étiologie de ce trouble débilitant.
Keywords: Schizophrenia; cAMP/PKA and Ca+2 signaling; complex I; dopamine; mitochondria; neurodevelopment and plasticity; oxidative phosphorylation system.
© The Author(s) 2016.
Conflict of interest statement
Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Figures

Summary of the most reproducible deficiencies in the oxidative phosphorylation system (OXPHOS) and its related cellular signaling in schizophrenia (SCZ) and bipolar disorder (BD). (A) The most frequent single-nucleotide polymorphisms (SNPs) reported in nuclear and mitochondrial DNA (nDNA and mtDNA, respectively) encoded subunits of complex I. (B) Increase and decrease in the expression of various subunits of the OXPHOS complexes. (C) Reduced and enhanced enzymatic activity of 3 complexes of the OXPHOS. (D) The respiratory chain complexes, electron transfer, and adenosine triphosphate (ATP) production. (E) The mitochondrial cAMP/protein kinase A (PKA) signaling pathway, which affects the expression of mtDNA encoded subunits of the OXPHOS complexes. (F) Altered glutamate NMDA receptor transmission and intracellular Ca2+ concentration and signaling. (G) Alterations in mitochondrial originated high-energy phosphates, lactate, and pH, indicating impaired energy production in cell or tissue. (H) Disease-related neurodevelopmental consequences of the alterations presented in A to G. Arrows indicate the direction of alteration. PCr, phosphocreatine.
Similar articles
-
The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia.
Ben-Shachar D. Ben-Shachar D. J Neural Transm (Vienna). 2009 Nov;116(11):1383-96. doi: 10.1007/s00702-009-0319-5. J Neural Transm (Vienna). 2009. PMID: 19784753
-
Ben-Shachar D. Ben-Shachar D. Schizophr Res. 2017 Sep;187:3-10. doi: 10.1016/j.schres.2016.10.022. Epub 2016 Oct 29. Schizophr Res. 2017. PMID: 27802911 Review.
-
Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT. Smeitink JA, et al. Cell Metab. 2006 Jan;3(1):9-13. doi: 10.1016/j.cmet.2005.12.001. Cell Metab. 2006. PMID: 16399500 Review.
-
Ni P, Noh H, Park GH, Shao Z, Guan Y, Park JM, Yu S, Park JS, Coyle JT, Weinberger DR, Straub RE, Cohen BM, McPhie DL, Yin C, Huang W, Kim HY, Chung S. Ni P, et al. Mol Psychiatry. 2020 Nov;25(11):2873-2888. doi: 10.1038/s41380-019-0423-3. Epub 2019 Apr 24. Mol Psychiatry. 2020. PMID: 31019265 Free PMC article.
-
Phosphorylation of OXPHOS Machinery Subunits: Functional Implications in Cell Biology and Disease.
Castellanos E, Lanning NJ. Castellanos E, et al. Yale J Biol Med. 2019 Sep 20;92(3):523-531. eCollection 2019 Sep. Yale J Biol Med. 2019. PMID: 31543713 Free PMC article. Review.
Cited by
-
Kim CW, Lee HJ, Ahn D, Go RE, Choi KC. Kim CW, et al. Toxicol Res. 2022 May 10;38(4):511-522. doi: 10.1007/s43188-022-00136-2. eCollection 2022 Oct. Toxicol Res. 2022. PMID: 36277363 Free PMC article.
-
The Complex Interaction of Mitochondrial Genetics and Mitochondrial Pathways in Psychiatric Disease.
Cuperfain AB, Zhang ZL, Kennedy JL, Gonçalves VF. Cuperfain AB, et al. Mol Neuropsychiatry. 2018 Jun;4(1):52-69. doi: 10.1159/000488031. Epub 2018 May 30. Mol Neuropsychiatry. 2018. PMID: 29998118 Free PMC article. Review.
-
Krzyściak W, Szwajca M, Śmierciak N, Chrzan R, Turek A, Karcz P, Bryll A, Pilecki M, Morava E, Ligęzka A, Kozicz T, Mazur P, Batko B, Skalniak A, Popiela T. Krzyściak W, et al. Sci Rep. 2024 Mar 8;14(1):5755. doi: 10.1038/s41598-024-56344-3. Sci Rep. 2024. PMID: 38459093 Free PMC article.
-
O'Brien JT, Jalilvand SP, Suji NA, Jupelly RK, Phensy A, Mwirigi JM, Elahi H, Price TJ, Kroener S. O'Brien JT, et al. Schizophr Bull. 2024 Aug 27;50(5):1197-1207. doi: 10.1093/schbul/sbae016. Schizophr Bull. 2024. PMID: 38412332 Free PMC article.
-
Zeber-Lubecka N, Kulecka M, Suchta K, Dąbrowska M, Ciebiera M, Hennig EE. Zeber-Lubecka N, et al. Antioxidants (Basel). 2023 Nov 8;12(11):1983. doi: 10.3390/antiox12111983. Antioxidants (Basel). 2023. PMID: 38001836 Free PMC article.
References
-
- Kann O, Kovács R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol. 2007;292:C641–C657. - PubMed
-
- Ben-Shachar D. Mitochondrial complex I as a possible novel peripheral biomarker for schizophrenia In: Ritsner MS. Ed. The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Vol III Springer: Netherlands: p. 71–83.
-
- Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–758. - PubMed
-
- Ricci JE, Muñoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 2004;117:773–786. - PubMed
-
- Seth RB, Sun L, Ea CK, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kB and IRF3. Cell. 2005;122:669–682. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous