Cyanide and the human brain: perspectives from a model of food (cassava) poisoning - PubMed
Review
. 2016 Aug;1378(1):50-57.
doi: 10.1111/nyas.13159. Epub 2016 Jul 23.
Affiliations
- PMID: 27450775
- PMCID: PMC5063682
- DOI: 10.1111/nyas.13159
Review
Cyanide and the human brain: perspectives from a model of food (cassava) poisoning
Desire D Tshala-Katumbay et al. Ann N Y Acad Sci. 2016 Aug.
Abstract
Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 μmol/l) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual-spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats.
Keywords: cassava; cyanide; neurocognition; paralysis; warfare.
© 2016 New York Academy of Sciences.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures

Metabolic fate of linamarin and cyanide during cassava processing and after ingestion of poorly processed cassava foodstuffs. Once the physical integrity of the cassava tissue is disrupted, linamarin is hydrolyzed to glucose and cyanohydrins. At pH > 5, the cyanohydrins spontaneously break down into ketones, and hydrogen cyanide (HCN) gas escapes. Lower pH leads to persistence of cyanohydrins in the finished food product, with the result that cyanide may be released by bacterial enzymatic cleavage in the gastrointestinal tract and enter the bloodstream. Once in the bloodstream, cyanide is either trapped by methemoglobin (MetHB–CN) or converted into thiocyanate (SCN). The human body may then excrete either intact linamarin or reportedly less toxic SCN in urine.

Spastic stance in a child severely affected by the cassava-associated spastic paraparesis known as konzo (child left) and a woman with a moderate form of the disease (woman with walking stick).

Low motor or cognition performance scores significantly correlate with high serum concentrations of 8,12-iso-iPF2α-VI isoprostane. Neuropsychological assessments were done using the Kaufman Assessment Battery for Children, 2nd edition (KABC-II) for cognition and the Bruininks/Oseretsky Test, 2nd Edition (BOT-2) measure for motor proficiency. (A) MPI (KABC-II) scores relative to serum concentration of 8,12-iso-iPF2α-VI isoprostane (triangles = konzo children, r = −0.78, P = 0.00; circles = non-konzo children, r = −0.24, P = 0.47). (B) BOT-2 scores relative to serum level of 8,12-iso-iPF2α-VI isoprostane (triangles = konzo children, r = −0.63, P < 0.01; circles = non-konzo children, r = −0.06, P = 0.86).
Similar articles
-
Cassava cyanogens and konzo, an upper motoneuron disease found in Africa.
Tylleskär T, Banea M, Bikangi N, Cooke RD, Poulter NH, Rosling H. Tylleskär T, et al. Lancet. 1992 Jan 25;339(8787):208-11. doi: 10.1016/0140-6736(92)90006-o. Lancet. 1992. PMID: 1346173 Clinical Trial.
-
Konzo and continuing cyanide intoxication from cassava in Mozambique.
Cliff J, Muquingue H, Nhassico D, Nzwalo H, Bradbury JH. Cliff J, et al. Food Chem Toxicol. 2011 Mar;49(3):631-5. doi: 10.1016/j.fct.2010.06.056. Epub 2010 Jul 21. Food Chem Toxicol. 2011. PMID: 20654676 Review.
-
Banea JP, Bradbury JH, Mandombi C, Nahimana D, Denton IC, Kuwa N, Tshala Katumbay D. Banea JP, et al. Food Nutr Bull. 2014 Mar;35(1):28-32. doi: 10.1177/156482651403500104. Food Nutr Bull. 2014. PMID: 24791576
-
Konzo: a distinct neurological disease associated with food (cassava) cyanogenic poisoning.
Kashala-Abotnes E, Okitundu D, Mumba D, Boivin MJ, Tylleskär T, Tshala-Katumbay D. Kashala-Abotnes E, et al. Brain Res Bull. 2019 Feb;145:87-91. doi: 10.1016/j.brainresbull.2018.07.001. Epub 2018 Jul 5. Brain Res Bull. 2019. PMID: 29981837 Free PMC article. Review.
-
Kambale KJ, Ali ER, Sadiki NH, Kayembe KP, Mvumbi LG, Yandju DL, Boivin MJ, Boss GR, Stadler DD, Lambert WE, Lasarev MR, Okitundu LA, Mumba Ngoyi D, Banea JP, Tshala-Katumbay DD. Kambale KJ, et al. Neurotoxicology. 2017 Mar;59:256-262. doi: 10.1016/j.neuro.2016.05.016. Epub 2016 May 28. Neurotoxicology. 2017. PMID: 27246648 Free PMC article.
Cited by
-
Pecze L, Randi EB, Szabo C. Pecze L, et al. Mol Med. 2020 Nov 9;26(1):102. doi: 10.1186/s10020-020-00225-8. Mol Med. 2020. PMID: 33167881 Free PMC article. Review.
-
DNA methylation patterns associated with konzo in Sub-Saharan Africa.
Kocher K, Bhattacharya S, Bramble MS, Okitundu-Luwa D, Ngoyi DM, Tshala-Katumbay D, Vilain E. Kocher K, et al. Clin Epigenetics. 2022 Dec 19;14(1):179. doi: 10.1186/s13148-022-01372-x. Clin Epigenetics. 2022. PMID: 36536449 Free PMC article.
-
Bramble MS, Vashist N, Ko A, Priya S, Musasa C, Mathieu A, Spencer A, Lupamba Kasendue M, Mamona Dilufwasayo P, Karume K, Nsibu J, Manya H, Uy MNA, Colwell B, Boivin M, Mayambu JPB, Okitundu D, Droit A, Mumba Ngoyi D, Blekhman R, Tshala-Katumbay D, Vilain E. Bramble MS, et al. Nat Commun. 2021 Sep 10;12(1):5371. doi: 10.1038/s41467-021-25694-1. Nat Commun. 2021. PMID: 34508085 Free PMC article.
-
Chronic consumption of cassava juice induces cellular stress in rat substantia nigra.
Rosas-Jarquín CJ, Rivadeneyra-Domínguez E, León-Chávez BA, Nadella R, Sánchez-García ADC, Rembao-Bojórquez D, Rodríguez-Landa JF, Hernandez-Baltazar D. Rosas-Jarquín CJ, et al. Iran J Basic Med Sci. 2020 Jan;23(1):93-101. doi: 10.22038/IJBMS.2019.38460.9131. Iran J Basic Med Sci. 2020. PMID: 32405352 Free PMC article.
-
Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, Ma JM, Schultink A, Karavolias NG, Wyman SK, Chauhan RD, Taylor NJ, Staskawicz BJ, Cho MJ, Rokhsar DS, Lyons JB. Gomez MA, et al. Front Plant Sci. 2023 Mar 17;13:1079254. doi: 10.3389/fpls.2022.1079254. eCollection 2022. Front Plant Sci. 2023. PMID: 37007603 Free PMC article.
References
-
- Rodgers GC, Jr, Condurache CT. Antidotes and treatments for chemical warfare/terrorism agents: an evidence-based review. Clinical pharmacology and therapeutics. 2010;88:318–327. - PubMed
-
- Alarie Y. Toxicity of fire smoke. Critical reviews in toxicology. 2002;32:259–289. - PubMed
-
- Geller RJ, Barthold C, Saiers JA, et al. Pediatric cyanide poisoning: causes, manifestations, management, and unmet needs. Pediatrics. 2006;118:2146–2158. - PubMed
-
- Luque-Almagro VM, Moreno-Vivian C, Roldan MD. Biodegradation of cyanide wastes from mining and jewellery industries. Current opinion in biotechnology. 2015;38:9–13. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical