Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory - PubMed
Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory
J Gao. Methods Enzymol. 2016.
Abstract
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects.
Keywords: Combined QM/MM; Dual-level potential; Enzyme kinetics; Kinetic isotope effects; Nuclear quantum effects; PI-FEP; Path-integral simulation.
© 2016 Elsevier Inc. All rights reserved.
Figures
![Fig. 1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ed/5788467/80008225ef1b/nihms935790f1.gif)
Computed nuclear quantum effects along the potential of mean force for the decarboxylation reaction of N-methyl picolinate ion in water. 13C denotes isotope substitution at the carboxyl carbon position.
![Fig. 2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ed/5788467/c3ce3710bd2e/nihms935790f2.gif)
Computed ratio of quantum partition function between 12C and 13C isotope substitutions at the carboxyl carbon position along the centroid reaction coordinate for the decarboxylation of N-methyl picolinate in water.
![Fig. 3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ed/5788467/1cdc6b7de776/nihms935790f3.gif)
Classical (blue) and quantum mechanical potential of mean force for the proton (red) and deuteron (green) transfer from nitroethane to acetate ion in water (dashed curves), and to Asp402 (solid curves) in the active site of nitroalkane oxidase.
![Fig. 4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ed/5788467/04186f7a100f/nihms935790f4.gif)
Superposition comparison of snapshots of the Michaelis complex (blue) and transition state (brown) structures for the wild-type enzyme dihydrofolate reductase (left) and the M42W/G121V double mutant (right).
![Fig. 5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ed/5788467/7ad4b500e94b/nihms935790f5.gif)
Computed and experimental H/D primary kinetic isotope effects for the hydride transfer process catalyzed by wild-type and M42W/G121V mutant dihydrofolate reductase at different temperatures.
Similar articles
-
Gao J, Major DT, Fan Y, Lin YL, Ma S, Wong KY. Gao J, et al. Methods Mol Biol. 2008;443:37-62. doi: 10.1007/978-1-59745-177-2_3. Methods Mol Biol. 2008. PMID: 18446281
-
Wong KY, Xu Y, Xu L. Wong KY, et al. Biochim Biophys Acta. 2015 Nov;1854(11):1782-94. doi: 10.1016/j.bbapap.2015.04.021. Epub 2015 Apr 30. Biochim Biophys Acta. 2015. PMID: 25936775 Review.
-
Liu M, Youmans KN, Gao J. Liu M, et al. Molecules. 2018 Oct 15;23(10):2644. doi: 10.3390/molecules23102644. Molecules. 2018. PMID: 30326599 Free PMC article.
-
Nuclear quantum effects and kinetic isotope effects in enzyme reactions.
Vardi-Kilshtain A, Nitoker N, Major DT. Vardi-Kilshtain A, et al. Arch Biochem Biophys. 2015 Sep 15;582:18-27. doi: 10.1016/j.abb.2015.03.001. Epub 2015 Mar 10. Arch Biochem Biophys. 2015. PMID: 25769515 Review.
Cited by
-
Use of Interaction Energies in QM/MM Free Energy Simulations.
Hudson PS, Woodcock HL, Boresch S. Hudson PS, et al. J Chem Theory Comput. 2019 Aug 13;15(8):4632-4645. doi: 10.1021/acs.jctc.9b00084. Epub 2019 Jul 2. J Chem Theory Comput. 2019. PMID: 31142113 Free PMC article.
-
Kannath S, Adamczyk P, Ferro-Costas D, Fernández-Ramos A, Major DT, Dybala-Defratyka A. Kannath S, et al. J Chem Theory Comput. 2020 Feb 11;16(2):847-859. doi: 10.1021/acs.jctc.9b00774. Epub 2020 Jan 21. J Chem Theory Comput. 2020. PMID: 31904954 Free PMC article.
-
Deuterium Isotope Effects on Acid-Base Equilibrium of Organic Compounds.
Liu M, Gao J. Liu M, et al. Molecules. 2021 Dec 20;26(24):7687. doi: 10.3390/molecules26247687. Molecules. 2021. PMID: 34946769 Free PMC article.
-
Zhou S, Wang Y, Gao J. Zhou S, et al. JACS Au. 2021 Jan 19;1(2):233-244. doi: 10.1021/jacsau.0c00110. eCollection 2021 Feb 22. JACS Au. 2021. PMID: 34467287 Free PMC article.
-
Giese TJ, York DM. Giese TJ, et al. J Chem Phys. 2023 May 7;158(17):174105. doi: 10.1063/5.0147218. J Chem Phys. 2023. PMID: 37125722 Free PMC article.
References
-
- Alhambra C, Corchado J, Sanchez ML, Garcia-Viloca M, Gao J, Truhlar DG. Canonical variational theory for enzyme kinetics with the protein mean force and multidimensional quantum mechanical tunneling dynamics. Theory and application to liver alcohol dehydrogenase. The Journal of Physical Chemistry. B. 2001;105:11326–11340.
-
- Bernasconi CF. The principle of nonperfect synchronization: More than a qualitative concept? Accounts of Chemical Research. 1992;25:9–16.
-
- Bigeleisen J. Statistical mechanics of isotopic systems with small quantum corrections. I. General considerations and the rule of the geometric mean. The Journal of Chemical Physics. 1955;23:2264.
-
- Boehr DD, McElheny D, Dyson HJ, Wright PE. The dynamic energy landscape of dihydrofolate reductase catalysis. Science. 2006;313:1638–1642. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous