Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease - PubMed
- ️Fri Jan 01 2016
Review
Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease
Abigail Basson et al. Front Immunol. 2016.
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn's disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Keywords: Crohn’s disease; diet; fatty acids; gut microbiota; inflammation; inflammatory bowel disease; mucosal.
Figures

Interactions between diet, gut microbiota, and the host within the intestinal lumen. Figure depicts an overview of the interconnected (pantropic) interactions between diet, gut microbiota and the host within the intestinal lumen.

Overview of gut microbiota interactions in SCFA production and degradation. Figure depicts an overview of gut microbiota interactions in SCFA production and degradation, including substrates associated with bacterial utilization. Compared to Bacteroides spp., the Firmicutes phylum encompasses fewer genes for polysaccharide degradation, implying this phylum plays a vital role in nutrition metabolic pathways. Complex interactions also exist among intestinal fungi and dietary fibers (185). Compiled from Ref. (, –, , , , –206).
Similar articles
-
Gasaly N, de Vos P, Hermoso MA. Gasaly N, et al. Front Immunol. 2021 May 26;12:658354. doi: 10.3389/fimmu.2021.658354. eCollection 2021. Front Immunol. 2021. PMID: 34122415 Free PMC article. Review.
-
Stecher B. Stecher B. Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0008-2014. Microbiol Spectr. 2015. PMID: 26185088
-
Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease.
Weng YJ, Gan HY, Li X, Huang Y, Li ZC, Deng HM, Chen SZ, Zhou Y, Wang LS, Han YP, Tan YF, Song YJ, Du ZM, Liu YY, Wang Y, Qin N, Bai Y, Yang RF, Bi YJ, Zhi FC. Weng YJ, et al. J Dig Dis. 2019 Sep;20(9):447-459. doi: 10.1111/1751-2980.12795. Epub 2019 Aug 1. J Dig Dis. 2019. PMID: 31240835
-
Núñez-Sánchez MA, Melgar S, O'Donoghue K, Martínez-Sánchez MA, Fernández-Ruiz VE, Ferrer-Gómez M, Ruiz-Alcaraz AJ, Ramos-Molina B. Núñez-Sánchez MA, et al. Int J Mol Sci. 2022 Jul 28;23(15):8361. doi: 10.3390/ijms23158361. Int J Mol Sci. 2022. PMID: 35955491 Free PMC article. Review.
-
Diet and microbiome in the beginning of the sequence of gut inflammation.
Ceballos D, Hernández-Camba A, Ramos L. Ceballos D, et al. World J Clin Cases. 2021 Dec 26;9(36):11122-11147. doi: 10.12998/wjcc.v9.i36.11122. World J Clin Cases. 2021. PMID: 35071544 Free PMC article. Review.
Cited by
-
West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, Coccia M, Görtz D, This S, Stockenhuber K, Pott J, Friedrich M, Ryzhakov G, Baribaud F, Brodmerkel C, Cieluch C, Rahman N, Müller-Newen G, Owens RJ, Kühl AA, Maloy KJ, Plevy SE; Oxford IBD Cohort Investigators; Keshav S, Travis SPL, Powrie F. West NR, et al. Nat Med. 2017 May;23(5):579-589. doi: 10.1038/nm.4307. Epub 2017 Apr 3. Nat Med. 2017. PMID: 28368383 Free PMC article.
-
Modulation of the Gut Microbiota by Nutrition and Its Relationship to Epigenetics.
Ferenc K, Sokal-Dembowska A, Helma K, Motyka E, Jarmakiewicz-Czaja S, Filip R. Ferenc K, et al. Int J Mol Sci. 2024 Jan 19;25(2):1228. doi: 10.3390/ijms25021228. Int J Mol Sci. 2024. PMID: 38279228 Free PMC article. Review.
-
Mast Cells Exert Anti-Inflammatory Effects in an IL10-/- Model of Spontaneous Colitis.
Lennon EM, Borst LB, Edwards LL, Moeser AJ. Lennon EM, et al. Mediators Inflamm. 2018 Apr 17;2018:7817360. doi: 10.1155/2018/7817360. eCollection 2018. Mediators Inflamm. 2018. PMID: 29849494 Free PMC article.
-
Rosser EC, Piper CJM, Matei DE, Blair PA, Rendeiro AF, Orford M, Alber DG, Krausgruber T, Catalan D, Klein N, Manson JJ, Drozdov I, Bock C, Wedderburn LR, Eaton S, Mauri C. Rosser EC, et al. Cell Metab. 2020 Apr 7;31(4):837-851.e10. doi: 10.1016/j.cmet.2020.03.003. Epub 2020 Mar 25. Cell Metab. 2020. PMID: 32213346 Free PMC article.
-
Zoelzer F, Schneider S, Dierkes PW. Zoelzer F, et al. Ecol Evol. 2023 May 8;13(5):e10066. doi: 10.1002/ece3.10066. eCollection 2023 May. Ecol Evol. 2023. PMID: 37168984 Free PMC article.
References
-
- Anderson M, Fritsche KL. (n-3) Fatty acids and infectious disease resistance. J Nutr (2002) 132:3566–76. - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources